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ABSTRACT 
As data from the U.S. Army Safety Center supports, a large percentage of Army 

Aviation human error accidents occur during NVG flight.  Despite this fact, there are 

very few simulation tools available to aviators at the unit level that aid them in learning 

or practicing NVG flight tasks.  This thesis examines the potential for a Chromakeyed 

Augmented Virtual Environment (ChrAVE), consisting only of Commercial-Off-The-

Shelf (COTS) hardware, to be used as an NVG flight training platform.  It also examines 

whether or not physically-based light calculations are necessary to produce adequate 

visual representation of simulated NVG imagery.   Twelve subjects performed 

simulated low-level NVG flight navigation tasks in the ChrAVE.  Treatments included 

questionnaires, vision tests, variation of the physics-based component of the NVG 

imagery, and performance of an evaluation task that compares standard thresholds 

between day and NVG navigation.  Analysis of data and subject feedback suggests that 

the ChrAVE has potential as an NVG flight training device, and that physically-based 

calculations may not be necessary to achieve simulated NVG imagery that is adequate for 

training.  The data also supports the existence of a substantial difference in the subjective 

evaluation standard between navigation performances based on flight condition. 
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I.  INTRODUCTION  

A. PROBLEM STATEMENT AND MOTIVATION 
Night vision goggles (NVGs) are optical devices that are worn on the head (often 

mounted to a helmet) that amplify the ambient light that exists in a night environment, allowing 

increased capability and situational awareness for the user.  Performing flight duties while 

wearing night vision goggles is one of the most challenging and inherently dangerous 

requirements faced by military rotary-wing aviators.  As data from the U.S. Army Safety Center 

supports, a large percentage of Army Aviation human error accidents occur during NVG flight.  

Despite this fact, there are very few simulation tools available to aviators that allow them to 

practice NVG flight tasks in the relative safety of a simulated flight environment.  This thesis 

will examine the viability of using commercial, off-the-shelf (COTS) equipment to construct a 

chromakeyed augmented virtual environment (ChrAVE) that simulates NVG rotary wing flight 

for training, and attempt to determine if physics-based electromagnetic energy and material 

response calculations are required for NVG visual simulation.  

1.  Characteristics of Existing Simulators 

a.  Full-Motion Simulators 
 Most simulation tools in existence for rotary wing aviators today fall into one of 

two categories: High resolution, full-motion simulators or non-motion, personal computer (PC) 

based training systems.   High resolution, full-motion simulators are very expensive to acquire 

and maintain, and usually require extensive training or a separate technician to operate.  When 

combined with its support equipment, a planning station, and an operator console, this kind of 

simulator generally has a rather large footprint, on the order of a dedicated building.  The 

software that drives such a simulator is very complex and expensive to develop, and the 

associated hardware is proprietary and designed strictly for use as a simulation tool.  This kind of 

simulator is fundamentally non-deployable and despite having high fidelity for instrumented 

and/or tactical flight, often does not even attempt to support night-vision device training.  

Further, since the high cost and large footprint of these systems mean that DOD services can 

afford relatively few of them (relative to the number of aircrew members that need to train on 

these systems), the amount of time the individual aviator can spend using these systems is 
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inherently constrained.  The need to ‘share’ such limited resources results in less than desired 

availability of these systems. 

b.  Personal Computer (PC) Based Systems 
 In contrast, low resolution, PC based training systems are becoming ubiquitous 

throughout the Department of Defense.  This type of training device is obviously very 

deployable and is relatively cheap to acquire and maintain.  An added benefit is found in the 

flexibility of the hardware--since it is PC-based, it can often be used for other day-to-day 

aviation unit tasks such as word processing or networked communication.  While this factor is 

certainly not the most important aspect of a simulation system and may even be viewed 

negatively by simulation purists, such flexibility is truly an asset in a severely cost-constrained 

training arena.  The training audience (the pilot or aircrew) is generally the only person(s) 

required to operate the system, and it has a very small footprint.  An example of this type of 

simulator is the Army’s Aviation Survivability Equipment Trainer (ASET), which gives still 

photo, video and very limited aural stimulations (tones) to the user.  Unfortunately, most of these 

systems do not offer real-time, 3D imagery, thereby limiting the level of immersion experienced 

by users.  Many of these systems (like the ASET) might actually be considered more of a 

procedural trainer.  This type of trainer can definitely play a role in training aviators, but as a rule 

cannot be effective in training complicated, visually sophisticated tasks such as NVG flight.  So 

while its low cost, availability, and ease of deployment make this kind of simulator attractive at 

the aviation unit level, it is not very immersive and does little to train complex tasks.   

c.  TopsceneTM 
 One simulation system that tries to bridge this gap is TopsceneTM.  TopsceneTM, 

produced by Lockheed Martin, Inc., is already being used by U.S. Navy and Marine 

communities.  TopsceneTM uses detailed satellite photography to produce a 3-D scene.  

TopsceneTM consists of integrated flight controls, two screens and a computer that is 

approximately the same size as a standard desktop monitor, although some TopsceneTM imagery 

can be reproduced on laptops.  The Navy currently maintains approximately 300 such systems, 

and TopsceneTM is used primarily as a mission rehearsal tool.  TopsceneTM is very deployable, 

and doesn’t have a large footprint.  It also simulates night vision imagery.   

Figure 1. TopsceneTM imagery (From Military Brings 3-D Advantage to War Preparation, 
by David McGuire, The Washington Post, March 17, 2003) 
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But a recent article in the Washington Post (Military Brings 3-D Advantage to War 

Preparation, by David McGuire, March 17, 2003) identifies several important cost and 

availability factors that appear to be shortfalls for TopsceneTM: 

But from the vantage point of Joe the Marine aviator, 3-D mission rehearsal 
remains something of a luxury for most pilots in the military.  Many pilots 
deployed to the Persian Gulf region come from stateside bases lacking 
TopsceneTM or similar technologies, and even when they are familiarized with the 
system, they rarely get to use it for longer than five minutes at a stretch, Joe said.  
The high cost of many of these systems is a factor. While slower PC and laptop-
based versions of TopsceneTM cost less than $1,000, the fully outfitted 
TopsceneTM racks that are the most useful to combat pilots set the Navy back as 
much as $300,000 each…’That doesn't include the cost of the satellite images 
necessary to create the models.  We don't have a lot of these out, and a lot of the 
guys here are not very familiar with it. Guys are coming on board slowly,’ he 
added. ‘Most guys can't really hog it. We've got a lot of people here and we've 
only got one [system].’ 

2.  The Potential Benefits of Using Commercial Off-The-Shelf (COTS) Equipment  
As these quotes illustrate, there is still an absence of low-cost, highly available, and 

easily deployable NVG simulation DOD-wide.  A relatively small, deployable NVG flight 

simulation device that uses COTS equipment could go a long way toward filling this gap.  Using 

COTS components is important for several reasons.  It would make the system relatively 

inexpensive, meaning more systems could be purchased for the same amount of money, making 

more systems available to aircrews.  COTS equipment would also allow for greater flexibility in 

acquisition, maintenance, and replacement of components.  It would allow the system maintainer 

to upgrade and improve the system as technology improves.  This is an extremely important 

capability that would keep the system from becoming quickly obsolete, given the pace of recent 

technological advances.  For example, if processor speed or graphics card capability improved 

dramatically over what is currently installed in the system, the system maintainer could simply 

purchase the improved component locally and replace it.  If such a system existed, it would 

likely proliferate through DOD aviation units rapidly, and could be utilized in several important 

training roles.  Initial NVG qualification training for aviators could incorporate such a training 

device, allowing aviators to become familiar with the capabilities and limitations of NVG flight 

in a safe training environment prior to attempting to actually fly with them.  Experienced aviators 

could potentially use such a training device to maintain their skills during times when they are 

unable to conduct actual NVG flight due to deployment, weather, or aircraft availability.  
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Aviators could even use the system to practice NVG flight tasks during the day, when mission 

requirements do not allow them to go on “reverse cycle” (perform their duties during the hours 

of darkness).  The potential of such a system, if it existed and was proven to be an effective NVG 

training device, could be immense. 

 

3.  The ChrAVE’s Basic Implementation 
The ChrAVE prototype developed by Lennerton would seem to be an obvious candidate 

to become such a simulation system.  The ChrAVE creates the ‘look and feel’ of a generic 

cockpit environment, and augments it with a visual representation of virtual terrain displayed 

from the perspective of being inside the cockpit (in other words, an ‘out the window’ view).   

 
   Figure 2.  Basic ChrAVE Implementation (From Lennerton, 2002) 

 

The ChrAVE uses chromakey, or ‘blue screen’ technology to mix the views of the real 

and virtual worlds so that the user can see himself, his cockpit, and the (virtual) terrain as he 

would in an actual aircraft.  The ChrAVE consists of COTS equipment on a transportable cart, 

has a relatively small footprint, and is easily maintained and modified.  If it can be shown that 

the ChrAVE is a viable NVG training device, then we are one step closer to the ‘perfect’ device-- 
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one that is affordable at the aviation unit level, deployable, has a small footprint, and uses non-

proprietary, COTS equipment-- described earlier. 

 
B. THESIS OVERVIEW 

Initial ChrAVE research (Lennerton, 2002) identified three steps to exploring the 

potential of a ChrAVE environment for training: “(1) research into the psychology and potential 

of training via simulators, (2) the production of a fully operational embedded trainer, and (3) 

verification of the results of using such a trainer.”  This thesis will continue Lennerton’s work in 

researching the psychology and potential of a ChrAVE environment for training.  In order to 

prove the viability of the ChrAVE prototype for use as an embedded training device, he tested 

subjects (experienced military helicopter pilots) on their ability to perform a low-level (200 feet 

above ground level) daytime navigation task.  As will be discussed in greater detail later in this 

thesis, Lennerton showed that the ChrAVE prototype could be useful in training this task under 

daylight conditions.  Implicit in this conclusion is that the ChrAVE’s visual representation of a 

daylight scene at low-level flight altitude is adequately detailed and realistic for training.  This 

thesis will extend that research to try to determine if a ChrAVE environment, using only COTS 

equipment, can produce a visual simulation of NVG imagery that is adequate for NVG training.  

It will also try to determine if the ChrAVE can achieve this ‘adequate’ level of NVG imagery 

without performing expensive (in terms of software development costs and processor time) 

physics-based light and material response calculations.  In order to examine the ChrAVE 

prototype’s ability to adequately represent NVG imagery, the approach of this thesis will be to 

obtain the opinions of and evaluate the performances of experienced military helicopter pilots 

(considered as NVG training subject matter experts (SMEs) based on their experience) while 

performing a low-level flight navigation task in a simulated NVG environment.  The subjects 

will be asked to perform a series of tasks that are virtually identical to those performed by 

Lennerton’s subjects, using the same prototype ChrAVE originally constructed by Lennerton.  

Subjects will conduct a pre-flight questionnaire that is designed to gather data on subject (NVG 

and day) flight, simulator, and virtual environment experiences.  The subjects will prepare a map 

for NVG flight, enter the ChrAVE and attempt to navigate a route in a virtual world similar to 

that of Lennerton’s subjects, but under simulated NVG conditions.  Each subject will fly a 

portion of the route using image rendering software that is physics-based, and another portion 

that uses rendering techniques that are not physics-based.  The performance data collected will 
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then be used to answer the two primary research questions of this thesis.  A within subject group 

comparison will be made to determine how subject performance changes based on whether NVG 

imagery was physics-based or not.  Additionally, subjects will complete a ‘post-flight’ 

questionnaire that will opine the aviators as to any difference in quality or realism of the two 

visual presentations, the ability of the ChrAVE to be used as an NVG flight training device, and 

check for any degree of cybersickness.   

C.  RESEARCH QUESTIONS 
As stated previously, there are two primary research questions this thesis will attempt to 

answer:  (1) Can the ChrAVE produce NVG imagery that is adequate for training?  (2) Is current 

COTS physics-based software a requirement for the production of NVG imagery for training?  In 

outlining the scope and relevance of these questions as they pertain to the work of this thesis, two 

key phrases demand additional definition: ‘adequate for training’ and ‘physics-based software’.  

1.  Is ChrAVE NVG Imagery Adequate For Training 
The term ‘adequate for training’ refers to the ability of a training system or simulator to 

impart training transfer to users.  For the purposes of this thesis, this term will refer to the 

potential ability of the ChrAVE to impart training transfer of a low-level navigation task in 

desert environment under NVG conditions.  The opinion of the subjects (as SMEs in the realm of 

helicopter low-level NVG navigation) as well as their task performance will be used to measure 

this potential for this research.  If the ChrAVE is found to have adequate potential as an NVG 

flight training device, future research may examine the use of the ChrAVE’s effects on actual 

task performance in an aircraft. 

2.  Is Physics-Based Software Necessary 
This thesis will use the term ‘physics-based’ to refer to simulation systems with software 

that attempts to render imagery of a virtual world based by performing physics equations to 

mathematically define the behavior and effects of light and material response.  This is an 

admittedly subjective definition, since there is software in existence that use physics calculations 

for only one or two aspects of its imagery presentation, and others that attempt to define virtually 

all object relationships and effects in terms of physics equations.  Performing physics based 

material response adds complexity to algorithms, uses additional processor cycles, and increases 

cost and time of software development.  Martin and Clark (2000) found that for a visual 

simulation of NVG imagery to be realistic, it must use physically-based light calculations.  It 
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may well be that some tasks, such as over-land helicopter navigation, do not require the level of 

detail that is provided by physics-based graphics, and other tasks such as target identification, do 

require them.  This research found that “Realistic luminance, contrast, and resolution are not 

possible without physics based material response.”  While this may be true for high resolution 

NVG simulation devices, it may not be an absolute requirement for training all NVG tasks.  

There are likely a set of tasks which can be trained in an NVG simulation environment without 

the added complexity and cost of physics based light calculations.  If this task set is large 

enough, it may be cost effective to produce software that creates NVG imagery adequate for 

training these tasks by using rendering techniques alone, resulting in software development and 

acquisition cost reductions for the Department of Defense. 

 

D. THESIS ORGANIZATION 
This thesis is organized into the following chapters: 

 

1. Chapter I:  Introduction.  This chapter includes an introduction to the problem, 

motivation, and outline for the thesis. 

 

2. Chapter II:  Background.  This chapter contains pertinent background information 

including an explanation of how night vision goggle technology works and its 

limitations, a discussion of how aviators train while using NVGs, information 

regarding helicopter navigation techniques,  summaries of relevant previous work , 

and a description of chromakey and augmented virtual environments.  

 

3. Chapter III:  Implementation.  This chapter describes how the system was 

implemented.  It contains descriptions and specifications of the hardware 

components and software employed in the implementation. 

 

4. Chapter IV:  Methodology.  This chapter describes experimental setup and 

execution.  It provides necessary information to recreate the experiment. 
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5. Chapter V:  Results.  This chapter contains results of the experiment. 

 

6. Chapter VI:  Conclusions.  This chapter contains conclusions reached from the 

experimental process. 

 

7. Chapter VII:  Future Work.  This chapter describes the research and 

implementation ideas that the author was unable to perform due to time or 

technology constraints.  Additionally, this chapter suggests new research questions 

generated by this research. 
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II.  BACKGROUND 

A. NIGHT VISION GOGGLE TECHNOLOGY 

1.  NVG Characteristics 
Military helicopter aircrews use NVGs extensively during night operations.  The use of 

NVGs provides military helicopter aircrews with greatly enhanced operational capability and 

significantly improves situational awareness during the hours of darkness.  There are some 

important operational characteristics that are common to virtually all the different models of 

NVGs currently in use by military aircrews.  It is important to have an understanding of the 

specifications, capabilities and limitations of NVGs in order to understand how they are used by 

aircrews, as well as how their use should be simulated for training purposes. 

NVG image intensification tubes are usually worn mounted to the front of an aircrew 

member’s helmet.  The mount normally has a swivel mechanism that allow the tubes to be 

locked in one of two positions:  an ‘up’ position that keeps the tubes locked in a vertical position 

and out of the aircrew member’s field of view; and a ‘down’ position that locks the tubes in a 

position in front of the aircrew member’s eyes for viewing.   

Figure 3.  A pilot wearing NVGs (From http://www.nvl.army.mil/home.html, May, 2003) 
Often aircrews will depart on a mission during daylight or dusk conditions with the tubes locked 

‘up’, and then transition the tubes to a ‘down’ position for use when conditions become too dark 

for the unaided eye.  The image intensifier tubes have several adjustment mechanisms that allow 

the wearer to configure them for optimal viewing position, viewing resolution, fit, and comfort.  

The wearer can adjust the vertical position, distance from the eyes, distance between tubes, and 

‘pitch’ angle (fore and aft tilt) of the image intensifier tubes using mechanisms that adapt the 

tubes to their individual viewing preferences.  The objective and eyepiece lenses allow for large 

and fine adjustments of focal point respectively.  The image intensifier tubes normally weigh 

approximately 1.8 pounds, and their position on the front of the helmet can cause neck muscle 

strain over time for aircrew members.  A weight bag (weighing up to approximately 22 ounces) 

mounted to the rear of the flight helmet can help to balance the weight of the image intensifier 

tubes, but also increases the total amount of weight worn on the aviator’s head to over three 

pounds.  While aircrew members normally become accustomed to operating with this weight on 
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their head, it can certainly cause fatigue and should be considered when operating under NVG 

conditions for extended periods of time.   

Most models of NVGs provide a small battery pack that attaches to the back of the flight 

helmet and connects to the image intensifier tubes via a short cable.  The battery pack normally 

accepts both lithium and ‘double A’ batteries, though not both types in combination 

simultaneously.  The battery pack usually also provides a receptacle that accepts external power, 

provided by a cable that attaches from the aircraft.  It is important to manage the routing of this 

cable (along with the audio/communications cable that also attaches to the flight helmet from the 

aircraft) in order to prevent the cable from restricting head movement or becoming tangled.     

2.  How NVGs Work 
Night Vision Goggles amplify the existing, ambient light energy in a night environment 

to provide the user enhanced operational capability and increased situational awareness during 

the hours of darkness.  Since NVGs are very complicated electro-optical systems, this thesis will 

not attempt to provide a thorough technical description of NVG components and how they 

function.  However, a basic description of the major components of NVGs and a high-level 

overview of how these components work may aid in understanding NVG capabilities and 

limitations, and are relevant to the visual simulation issues that are the focus of this thesis. 

NVGs consist of one or two image intensifier tubes that perform ambient light 

amplification.  Each image intensifier tube contains five major functional components (listed in 

the order in which light travels):  an objective lens, a photocathode, a microchannel plate, a 

phosphor screen, and an eyepiece lens. 
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Figure 4.  Image Intensification Process (From Martin and Clark, 2000) 
 

Ambient light (electromagnetic energy in the form of photons) from a scene enters the 

image intensifier tube through the objective lens.  The objective lens focuses these photons as an 

inverted image onto the photocathode.  The photocathode then converts the image from photons 

to electrons by releasing electrons in the pattern of that inverted image, and these electrons are 

accelerated across a small space to the microchannel plate.  The microchannel plate contains 

millions of microscopic channels, or tubes, which have openings on the front and back of the 

plate and contain an electrical potential gradient along their length.  Electrons flowing from the 

photocathode enter the individual tubes of the microchannel plate.  These electrons ‘bounce’ 

through the tubes, and they impact the internal walls of tubes, more electrons are released.  With 

each impact, more electrons are released, and this increased amount of electrons moves through 

the tubes, continuing to collide with the walls and releasing still more electrons.  This electron 

multiplication process continues until the mass of electrons exit the microchannel plate.  After 

leaving the microchannel plate, the electrons are accelerated across another small gap, striking 

the phosphor screen.  The phosphor screen converts the electrons back to light energy, or 

photons.  At this point the light amplification process is complete, and the luminance of the 

image produced by the photons from the phosphor screen is many times brighter than that of the 

image that originally entered the image intensifier through the objective lens.  The image from 

the phosphor screen is then focused via the adjustable eyepiece lens onto the retina of the 

wearer’s eye, where he receives a monochrome green image of the scene.  An example of an 

NVG image is provided in Figure 5. 
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Figure 5.  NVG Imagery 
 
3.  NVG Visual Limitations 
Night vision goggles in use today are extremely capable and offer outstanding capability 

for enhancing night operations and increasing situational awareness during the hours of darkness.  

However, there are still several key limitations that users must be familiar with in order to 

operate safely and successfully with these devices.  A summary comparison of the visual display 

characteristics of the normal (healthy) human eye, image intensifier tubes, and the ChrAVE 

(NVG implementation) are provided in Table 1. 

 

Visual 

Display 

Horizontal 

FOV 

Visual 

Resolution 

Color  

Vision 

Peripheral 

Vision 

Type   

Vision 

Eye 200o 20/20 Yes Yes Binocular 

NVG 40 20/40 No No Monocular 

ChrAVE 40 Varies Limited No Monocular 

Table 1.   Summary Comparison of Visual Display Characteristics 
 
 

a.  Limited Field of View 
 One of the most important limitations of night vision goggles is that the horizontal 

field of view (FOV) provided by the image intensifier tubes of most NVGs in use by military 

aircrews today is only 40 degrees, which offers pilots no peripheral vision whatsoever.  Arthur 

(1996) has shown that limited FOVs and the lack of peripheral vision can result in difficulty in 

depth perception and distance estimation.  The ability to correctly judge depth is obviously a 

critical limitation as it relates to a helicopter pilot recognizing his aircraft’s height (altitude) 

above the ground.  Difficulties in estimating distance can result in striking obstacles or other 

aircraft due to skewed perception of relative positioning.   Relatively expensive, limited 

production models of NVGs exist that are capable of providing a larger FOV (up to 120 degrees 

horizontal) in an attempt to overcome these limitations, but as of now these models are not 

available to military pilots as approved aids to visual flight.  Aircrews rely upon several 

techniques or procedures to overcome limited field of view.  The most important procedure is 
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using visual scanning techniques.  By simply sweeping the NVGs back and forth across the 

whole visual search area (by constantly turning his head to the right and left), the aircrew 

member can give himself the perception of having a larger horizontal field of view.  This 

technique allows the NVG wearer to maintain situational awareness of an area that is larger than 

that which he can see at any one time by directly viewing a scene.  In order to more closely 

replicate the use of NVGs during this research, the HMD used by subjects was adjusted to 

provide only a 40 degree horizontal FOV. 

  b.  Monocular Vision 
 Another important visual limitation of NVGs is that they provide only monocular 

vision to both eyes, rather than the binocular vision that humans have normally.  Binocular 

vision occurs due to the slightly different point of view between the right and left eyes (Figure 

7).  Binocular vision allows for depth perception and distance estimation for near objects, -and 

also provides important cues as to relative motion (motion parallax) and orientation.  Motion 

parallax describes the visual cue that helps humans detect movement rates.  It can also be 

described as relative motion, as during movement near objects appear to move in the opposite 

direction to your movement at a rate relative to you speed, while objects farther away appear to 

move much more slowly.  A problem that can be encountered due to the lack of binocular cues is 

undetected aircraft movement, or drift.  Undetected aircraft drift can result in a helicopter making 

contact with obstacles when operating at low altitude or in hovering flight.  During flight at any 

given speed, the ground will appear to move more slowly at higher altitude than it appears to 

move at lower altitudes.  Pilots quickly become accustomed to this visual cue, and use it to help 

judge their altitude and relative speed.  This cue is normally perceived by use of peripheral 
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vision, which is not available due to the limited FOV of the NVGs.  

 
Figure 6.  Normal Binocular Vision vs. Monocular Vision Provided by NVGs 
 

Lack of motion parallax when wearing NVGs can result in an obviously undesirable situation 

where the aircraft is moving without the pilot perceiving it, and also makes it very difficult to 

judge closure rates during approaches or other low altitude maneuvers.  In order to offset this 

limitation, pilots are taught to use good scanning techniques, constantly turning their heads to the 

right and left to try to capture the information they would normally get from peripheral vision.  

In the ChrAVE, the pilot will have a view of the outside world that simulates being in the right 

side of a ‘side by side’ cockpit.  If 0 degrees is considered to be looking straight ahead while 

seated in the ChrAVE’s pilot station, he will be able to scan the outside world from 

approximately 330 degrees (slightly to his left/front) to approximately 110 degrees (slightly to 

his right/rear).  This should allow pilots/subjects to use scanning techniques similar to that which 

they would be able to use in a real cockpit when seated at the right (pilot’s station) in a real 

aircraft.   

c. Visual Resolution 
 Another important limitation of NVGs is the ‘less than perfect’ visual resolution 

they provide.  NVGs display images with 20/40 ‘best case’ resolution.  This means depending on 
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the ambient light, features and contrast of the scene being viewed, and other factors, aviators 

may get an image that is significantly worse (as bad as 20/200) in terms of visual resolution.  

Images and objects appear to be blurred, and shapes may appear ambiguous at a distance.  This 

has obviously dangerous implications for military tasks such as target acquisition and friend or 

foe identification.  The only way for this limitation to be overcome is by gaining experience in 

viewing NVG imagery.  Aviators must become accustomed to viewing objects and scenes at less 

than optimal resolution and interpreting the imagery displayed by the NVGs.   

d.  Colors and Textures 
           NVGs produce a green monochrome view of the night scene.  The image 

displayed is similar to ‘black and white’ television, only the levels of gray that distinguish 

between light and dark colors are instead levels of green.  Other colors are not displayed, and 

aviators must rely upon experience as well as scene context in order to gather color cues.  

Interpreting textures of objects is also an important visual cue that is limited by NVG viewing.  

Several factors contribute to the difficulty in determining textures while using NVGs including 

the lack of binocular vision, limited visual resolution, the limited FOV, and the lack of color 

display.  This lack of texture perception is intensified at higher altitudes or greater distances. 

e.  Visual Noise 
           NVGs produce some degree of visual noise, and there can be several different 

causes and types of noise.  Scintillation and random temporal noise are present in all NVGs that 

are currently in use by aviators.  These effects are best described as ‘sparkles’ of varying size and 

frequency that appear to pass through the image intensifier tubes toward the observer.  These 

effects vary greatly depending on the type of NVG being used and the ambient light conditions.  

Darker environmental conditions tend to make scintillation and random temporal noise more 

pronounced, while operating in areas with higher levels of ambient light makes these types of 

noise less noticeable.  Aviators become accustomed to viewing scintillation and random 

temporal noise as a normal characteristic of NVG displays, so modeling these effects is critical to 

creating a believable NVG scene.  Another type of noise that is common to all NVGs is the 

effect of light blooming.  Light blooming occurs when lights come into the NVG FOV.  When 

viewing lights directly, a glow extends out from the source of the light creating a sort of ‘halo’ 

effect.  Light blooming varies based on ambient conditions and the color of the light.  Higher 

levels of humidity or particles in the air can create larger or more intense light blooming.  Due to 
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the manner in which wavelengths of different colors of light are received and processed by the 

NVGs, certain colors of lights are easily viewed while others produce very bright and 

unviewable effects on the NVG display.  Blue or green lights are generally easily viewed by 

NVGs.  These colors are used for illuminating aircraft cockpits because they are easily viewed 

and do not interfere with NVG operations.  Red and yellow lighting (as well as normal white 

light) can create intensely bright effects on the NVG display, and can render the display 

unusable.  Bright lights can also appear to shut down the image intensifier display if viewed 

directly, however the tubes do not actually stop functioning.  Instead, the automatic gain of the 

NVGs adjusts itself to the brightness of the light in its FOV, and in doing so renders the rest of 

the display too dark to view.  These effects can be difficult to model, however it is important that 

they be modeled correctly if the scene is to be realistic.  Fixed pattern noise can be caused when 

there is a problem in the display system of the image intensifier tubes.  An example of this type 

of noise is a ‘honeycomb’ pattern displayed in one or more areas of the NVG FOV.  This pattern 

could result from misalignment of the microchannel plate.  Another example of fixed pattern 

noise is white or black spots in the image that stay in the same position in the FOV regardless of 

viewing direction.  NVGs that are in good, serviceable condition normally do not display fixed 

pattern noise.  It is not necessary to model this type of noise to create a believable NVG scene.   

 

B. AVIATION TRAINING WITH NIGHT VISION GOGGLES 

1.  Initial NVG Qualification 
Before an Army aviator begins training with NVGs, they are trained in basic day and 

night visual flight (Visual Flight Rules), and also trained to fly using only instruments 

(Instrument Flight Rules).  Only when they have passed their initial qualifications in these modes 

of flight do they begin initial NVG qualification.  For Army pilots, this initial qualification is 

done at the Army’s flight school at Fort Rucker, Alabama, before these aviators are sent out to 

tactical units.  All flight training is conducted by instructor pilots (IPs) who have gone through 

extensive training and generally have a great deal of experience in the aircraft in all modes of 

flight.  During this initial day/night and instrument training, simulation tools ranging from 

computer-based procedural trainers to full-motion instrument simulators are used prior to 

trainees getting into the aircraft to fly.  This is done so that the actual flight training in the aircraft 

can be done more safely and efficiently.  But when the aviator transitions to the NVG portion of 
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the curriculum, there are no simulation tools that are utilized to prepare them for this mode of 

flight.  Classroom training, videos, and stationary cockpit drills are the only experience trainees 

get prior to getting into the aircraft and flying with NVGs.  If the ChrAVE proves to be a viable 

NVG training system, it’s low-cost and availability might make it an attractive candidate for use 

in further preparing trainees during their initial NVG qualification training.  This would give the 

trainees invaluable experience with the visual effects and limitations of wearing NVGs in the 

cockpit prior to exposing them to the dangers of actually flying the aircraft while wearing NVGs.   

2.  NVG Mission and Continuation Training 
Once Army aviators successfully complete initial flight qualification training they are 

sent to tactical units.  Aviators arriving to tactical units from flight school are trained in 

additional aircraft and mission tasks as required by the unit.  Part of this training is ‘mission’ 

training, where they are trained to perform individual, crew, and collective tasks that support the 

unit’s war-time mission.  These tasks are trained in all conditions, to include flight with NVGs.  

As there are currently no NVG simulation tools available at the unit level, there are really only 

three parts of a unit’s NVG training curriculum:  academic training, ‘blind cockpit’ drills, and 

training flights.   Academic training is important for expanding the NVG knowledge base of 

aviators related to such topics as NVG capabilities and limitations, anatomy of the human eye 

and factors affecting night vision, and NVG tactics, techniques, and procedures.  ‘Blind cockpit’ 

drills are a teaching method that involves putting the trainee into a static aircraft (on the ground 

with engines off) during the hours of darkness.  Trainees are then drilled on locating the correct 

switches and controls in a dark cockpit.  Academic training continues throughout the aviators’ 

careers, and they are responsible for maintaining the information they are taught.  Blind cockpit 

drills are usually conducted only once.  NVG flight training makes up the remainder of the 

aviators’ training regimen.  Just as in flight school, there are no NVG training tools that are 

available to aviation trainees.  Their only method of training NVG tasks is to actually fly the 

aircraft, which means there is little room for error without dangerous, sometimes catastrophic 

results.   

There are four levels of aviator NVG proficiency determined by unit commanders (based 

on evaluation by IPs) according to the training level and competency of each aviator.  These are 

known as readiness levels or RLs.  NVG RL3 indicates an aviator is flight school qualified, but 

has not shown proficiency to fly with anyone other than IP qualified pilots.  NVG RL2 indicates 
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the aviator has demonstrated proficiency in basic aircraft control and emergency procedures and 

is undergoing mission training.  NVG RL2 aviators can only fly with IPs or NVG Unit Trainers, 

who are specially designated pilots authorized to assist IPs in conducting mission training.  NVG 

RL1 indicates the aviator has completed mission training, and is able to fly with any NVG Pilot-

In-Command (PIC).  Finally, NVG PIC indicates that the pilot is capable of flying with any 

NVG RL1 pilot, and is responsible for the safe and effective operation of the aircraft.  After a 

pilot achieves NVG RL1 designation, they are responsible for flying a minimum amount of NVG 

flight hours in order to maintain their training level and flight proficiency.  This is called 

continuation training.  Unfortunately, due to high unit operational tempo and the challenges 

related to putting aviators on reverse cycle (reporting for duty at night rather than daytime), 

aviators often fly only that minimum amount of flight hours.   

This is where the ChrAVE, if proven to be a viable NVG training device, could be most 

valuable.  Pilots could augment their flight hours with time spent practicing tasks in the 

ChrAVE.  They could also use the ChrAVE as a mission rehearsal tool, flying their mission in a 

simulated NVG environment in order to further prepare them for the real flight.  It is important to 

make clear that while the ChrAVE or another NVG simulation device may be able offer a safe, 

low cost environment where making a mistake is not fatal, no simulation device can take the 

place of actually flying the aircraft under NVG conditions.  It is not the argument of this thesis 

that training flights should be limited or replaced, but rather augmented.  It is the author’s 

position that the best way to become more proficient at flying with NVGs is to get more 

experience actually flying the aircraft with NVGs.  However, there are definitely important roles 

for a low-cost, always available, NVG simulation device in mission and continuation training at 

the aviation unit level. 

   

C. SUMMARY OF PREVIOUS RESEARCH 

There are two key research documents that helped form the basis for this thesis.  

Lennerton’s “Exploring A Chromakeyed Augmented Virtual Environment for Viability as an 

Embedded Training System for Military Helicopters” (2002), examined the the ChrAVE’s 

viability as an embedded training system.  His research not only showed that the ChrAVE had 

potential as a trainer, but also set the stage for this thesis as follow-on work.  Indeed, much of the 

software and hardware (including the ChrAVE platform itself) originally created and 
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implemented by Lennerton was simply modified for use in providing the NVG environment 

necessary for collecting data for this thesis.  “Physics Based Simulation of Night Vision 

Goggles” by Martin and Clark determined that physics-based calculations of NVG imagery were 

a requirement for simulation-based training and mission rehearsal to be realistic.  The relevance 

and impact of these research documents dictate their summarization in this thesis.   

1.  Summary of Lennerton’s Research 
Lennerton identified the need for a high fidelity aviation training device that could 

augment the flight training of military helicopter pilots who were deployed aboard naval vessels 

at sea.  His thesis focused on the viability of a ChrAVE which would ultimately be embedded in 

an actual helicopter, to provide such a capability.  His thought was that such a device could help 

maintain the readiness of aviators during deployments, and possibly delay or prevent the decay 

of perishable flight skills.  There were several key points behind Lennerton’s rationale in using a 

ChrAVE embedded in the actual helicopter to create such a training device, rather than a separate 

system.  First, separate training systems require additional space, which is obviously limited 

aboard a ship.  Second, training systems that are small and deployable (such as PC based 

systems) do not provide the level of immersion and fidelity that is required to adequately 

simulate helicopter flight.  Lennerton also points out that using the actual helicopter as part of the 

training system would create the highest level of fidelity of cockpit design and user interface to 

the system.  Using the helicopter would also go a long way toward reducing the need for ‘extra’ 

equipment associated with simulation systems requiring additional shipboard space.   

To examine the viability of such an embedded system, Lennerton built the ChrAVE 

prototype that is described in detail in Chapter 3 of this document.  For his initial experiment, 

Lennerton used fifteen male, U.S. Navy and Marine helicopter pilots who were students of the 

Naval Postgraduate School, and therefore in a non-flying status.  Lennerton’s treatments 

included a pre-flight questionnaire, map preparation for a low-level route of flight, a battery of 

physiology tests prior to virtual ChrAVE flight, a low-level navigation flight, a battery of 

physiology tests following the virtual flight, and an exit questionnaire.  After the entire subject 

pool had completed their virtual flights, each subject was asked to evaluate the performances of 

their peers.   

The pre-flight questionnaire inquired into the subjects’ medical history, flight experience, 

and subjective parameters for conducting acceptable low-level helicopter navigation.  Lennerton 
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also asked the subjects to evaluate a series of slides which represented fictitious navigation 

performances.  He used this part of the questionnaire as a baseline for the subjective evaluation 

standards for the subject pool.  The subjects then prepared a 1:50,000 map for use in the low-

level flight in the ChrAVE.  The subjects were told to prepare the map for their use in conducting 

a low-level navigation flight of a route that was drawn on a satellite photo.  There was no time 

limit associated with this portion of the experiment, and subjects were provided all of the 

required tools to accomplish this task such as scissors, markers, and tape.  At four times 

throughout the experiment, Lennerton administered a series of physiological test to the subjects.  

These tests included a visual acuity test, color identification test, Dvorine Pseudo-isochromatic 

plates, and a hand-eye coordination test.  The purpose of these tests was to measure the 

physiological effects of the ChrAVE over time.  These tests were administered before the 

subjects donned the HMD (baseline un-hooded physiological levels), immediately after donning 

the hood (baseline hooded physiological levels), after conducting the virtual flight but before 

taking off the HMD, and immediately after removing the HMD.  The subjects performed the 

virtual land navigation task for 30 minutes, and were instructed to fly as much of the route as 

they could in that amount of time, as accurately as possible.  They were administered a post-

flight questionnaire and were debriefed after the virtual flight.   

The results of Lennerton’s experiment seem to indicate that the ChrAVE does indeed 

have potential as an embedded flight training system.  Although data from the questionnaire 

showed that the subject pool considered 260 meters to be the maximum deviation from a route of 

flight for a navigation task to be considered as ‘acceptable’, only one subject of fifteen was able 

to average 260 meters or less over the entire route (Table 2).  Despite that fact, eleven of the 

fifteen subjects received at least ten 
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Table 2.   Subject Virtual Flight Navigation Results (From Lennerton, 2002) 

‘acceptable’ ratings during the peer evaluation portion of Lennerton’s experiment.  This 

illustrates the subjective nature of evaluating a navigation task, and points to the existence of 

flexible, subjective standards of evaluators.   
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Table 3.   Peer Evaluation Results (From Lennerton, 2002) 
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Lennerton used the term ‘vacuously viable’ to describe the relationship of his experiment 

results to the answer of his primary research question.  In short, after analyzing his results, 

Lennerton could not quantitatively prove the ChrAVE was viable due to the lack of actual 

aviation resources on which to compare his data.  But he could  also find no evidence proving 

that the ChrAVE would not be viable as an embedded helicopter training device.  He therefore 

recommended that the ChrAVE continue to be used as a prototype for research until this type of 

comparison can be made.  The research contained in this document is one step in that direction, 

and attempts to extend Lennerton’s base research to determine the ChrAVE’s viability in the 

realm of NVG flight training.  

2.  Summary of Martin and Clark’s Research 
Martin and Clark used a series of interviews with experienced users of NVGs from the 

Air Force, Navy, and Army to derive what they consider to be the nine “core requirements” for 

NVG simulations across a broad spectrum of missions.  These core requirements are:   

• Full range of night sky illumination from overcast starlight to full moon 

• Effects of light sources 

• NVG characteristics 

• Accurate surface reflectivity 

• Realistic “out the window” night scene 

• Shadows 

• Weather effects 

• Obscurants 

• A realistic gaming area 

After describing each of these core requirements in detail, the authors give situational 

evidence as to why each is indeed a requirement for visual simulation of NVG imagery.  Martin 

and Clark proceed to discuss how best to capture these requirements in real time simulation, and 

specifically whether the best approach is to stimulate actual NVGs to produce the image for the 

user or to instead simulate the image provided by NVGs using physics-based imagery.  They 

argue that stimulating NVGs is an approach that merely satisfies the commonly assumed 
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requirement to represent the “form, fit, and function” of NVGs.  In their consideration, the 

stimulate approach does not represent the best method for NVG simulation due to the inability of 

existing display devices to provide the full, dynamic range of realistic night scenes in order to 

make the stimulated NVG perform correctly.  Instead, Martin and Clark point to physics-based 

simulation as as the preferred method for generating NVG imagery for training and mission 

rehearsal.  They list four distinct advantages of the physics-based approach:  the ability for 

greater realism due to the ability of a computer to provide greater computational dynamic range 

than that of a display device used to stimulate NVGs, the inability to display realistic luminance, 

contrast and resolution without a physics-based material response, the ability to present a more 

realistic ‘out the window’ scene when simulating NVGs than when stimulating NVGs, and the 

significant preparations needed to use real NVGs in a training system (such as creating a “light 

tight” environment).  Martin and Clark do not report any experimental data that supports their 

arguments, and they do not examine the capabilities of the most current image rendering 

techniques (without physics-based calculations) to create a simulated NVG environment. 

 

D. CHROMAKEY TECHNOLOGY AND AUGMENTED REALITY 
Chromakey technology is used to provide the virtual world of the ChrAVE.  In 

Chromakey technology a key color, often blue or green, that is found in a foreground scene is 

identified and replaced with the corresponding pixel from a background scene.  When the 

background and foreground scenes are properly mixed, the result is a single, composite scene.  

This technique is used daily by television weathermen. They stand in front of a large 

chromakeyed screen, and computer generated map and weather information displayed on the 

screen behind them.  Figure 8 shows an example of the composition of a chromakeyed scene.   
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Foreground Scene
with Blue Chromakey Background Scene Composite Scene

Composing a Chromakeyed Scene

 

Figure 7.  (From www.nps.navy.mil/cs/research/vehelo/Chromakey.htm, May, 2003) 

 

The composite scene can also be described as an example of augmented reality.  

Augmented reality is a combination of a real scene viewed by a user and a virtual scene 

generated by the computer.  In the case of the ChrAVE, the virtual portion of the scene consists 

of only the virtual desert terrain of the National Training Center at Fort Irwin, California, as 

viewed through simulated NVG imagery.  In short, the ChrAVE uses chromakey technology as a 

method of achieving augmented reality. 
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III.  IMPLEMENTATION 

A. HARDWARE AND PHYSICAL LAYOUT 
The ChrAVE as it exists today is a slightly more advanced version of the original 

prototype built by Lennerton in 2001.  It’s purpose remains serving as a laboratory for research 

into the training potential of certain tasks via simulators.  It consists completely of COTS 

equipment, and purposely contains no custom, one-of-a kind, or specially made components.  

Several upgrades have been made to the original prototype, and these changes will be discussed 

in detail in this section.  Many more advances and improvements are planned, and the ChrAVE 

will be continuously refined and tuned as additional research identifies areas for improvement.  

The basic ChrAVE configuration is still intended to represent the right side of a dual-pilot, side-

by-side helicopter cockpit.  It can be described as “intentionally generic”, since the ChrAVE 

purposely does not attempt to exactly replicate any one model of helicopter cockpit.  This design 

is intended to support research for the many different types of helicopters in use by the U.S. 

military today, rather than to focus on specific airframes.  Detailed hardware specifications for 

all ChrAVE components are presented in Appendix E. 

1.  Platform 
The ChrAVE’s platform is comprised of a wooden deck, a single pilot’s seat, a full set of 

flight controls (cyclic, collective, and pedals that are not yet implemented for use in actually 

controlling simulated flight), and is enclosed by materials that attempt to emulate the walls, 

windscreens, windows, and roof of the cockpit. 

a. Seat & Flight Controls 
 The current implementation of the ChrAVE platform uses a Flight Link Inc. seat 

and basic helicopter flight controls.  When set up for use, these flight controls produce inputs 

similar to standard multi-axes game port input devices to PCs.  As in a real helicopter, the cyclic 

controls the tilt of the simulated main rotor disk, and therefore affects the pitch and roll attitudes 

of the aircraft.   Similarly the collective controls thrust (power), and the rudder pedals affect yaw 

and trim.  There is also a button on the cyclic that can be given specific assignments.  The flight 

controls were not used by the navigating pilot to control aircraft flight during the experiment.  

Their purpose was simply to provide an aesthetically realistic illusion of an actual helicopter 

cockpit environment to subjects. 
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Figure 8.  Seat and Flight Controls (From Flight Link Inc., 2001) 

 
b.  Instrument Panel 

 A generic instrument panel is provided via a separate networked Silicon Graphics 

computer and 19 inch flat screen monitor.  The instrument panel contains indications of airspeed, 

attitude, altitude, turn and slip, heading, and vertical speed.  This instrument panel is mounted to 

the ChrAVE’s wooden platform, and positioned in front of the pilot’s station. 

 
Figure 9.  ChrAVE Instrument Panel (SGL LCD monitor) 
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c.  Cockpit Structures  
           The mock cockpit walls, roof and window are intended to provide a ‘look and feel’ 

of an actual helicopter cockpit, albeit a limited one.  They are also meant to provide realistic 

obstacles to pilot movement and observation (restrict the line of sight), similar to the obstacles 

found in a real helicopter airframe.  Additionally, the deck was specifically designed and built to 

allow viewing of the virtual terrain through a mock chin bubble.  A chin bubble is a transparent 

windscreen found in most helicopters just below and forward of the pilot station (pedal area).   

The chin bubble allows the aircrew to have line of sight directly below the aircraft. 

 
Figure 10.  The ChrAVE Platform 

 

2.  Chromakey Blue-Screen Matting 
A blue chromakey cloth material is used as a backdrop for the front, right portions of the 

ChrAVE’s mock cockpit platform.  The material runs from front left of the pilot’s station 

(approximately the pilot’s eleven o’clock position) around the front to the right rear (four o’clock 
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position).  This material is used (via chromakey technology) to present an ‘out the window’ view 

of the virtual world.  Identically colored chromakey blue tape was used to hide the presence of 

seams in the material. 

 
Figure 11.  2-inch wide chromakey blue tape (From Mole-Richardson Inc., 2001) 

 
3.  Lighting 

 Lighting was the most challenging component of the chromakey technology 

implementation.  In order for the chromakey mixer to correctly perceive the chromakeyed blue 

backdrop (called the matting), it must be evenly lit and contain no shadows.  A number of 

fluorescent lamps were positioned around the mock cockpit so as to light the matting evenly 

while not impeding the navigator’s view of the matting.  This was especially challenging given 

the large amount of blue matting to be lit.  Any uneven lighting or shadows creates undesired 

visual artifacts on the mixed visual scene.  An additional hurdle was ensuring that the lamps did 

not directly shine into the camera lens or reflect off of the instrument panel or other surfaces.  

This implementation employed four fluorescent light fixtures that were four feet in length and 

four fixtures that were two feet long.  Each fixture had high output, flicker-free ballast that 

operated on 120 VAC/60Hz.  Each fixture also included a specular reflector, and two lamp barn 

doors that helped direct the light while preventing unwanted splash-back.  
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Figure 12.  Lighting fixture used in the ChrAVE (From Flo Co, Inc., 2001)  

 

4.  Headgear 

a.  Head Mounted Display 
           The ChrAVE’s Head Mounted Display (HMD) is a Virtual Research Incorporated 

model V8.  The V8 uses an active matrix Liquid Crystal Display (LCD) that has a Video 

Graphics Array (VGA) pixel resolution of (640x3) x 480.  This HMD was chosen for use in the 

ChrAVE after consideration of cost versus performance. There are several commercial HMDs 

available with higher resolution, but they were determined to be far too costly for this research.  

The V8 provides a CRT quality image, and its relatively low cost is in keeping with the overall 

ChrAVE system goal of affordability, which in turn will make the ChrAVE more available. As 

technology improves and costs of higher resolution HMDs decline, the ChrAVE will be 

upgraded.  The V8 has several adjustment features that allow the wearer to fit the apparatus 

comfortably to his head.  It also allows for interpupillary distance (IPD) as well as eye relief 

adjustments. The area below the V8’s viewing screens is occluded with a flexible, black, foam 

rubber material.  This blocks line of sight below the viewing screens, and prevents the user from 

viewing anything except what is presented on the HMD viewing screens. The V8’s integrated 

earphones were not used during this research, and therefore they were rotated above the 

headband and away from the subjects’ ears.  Audio was provided by a separate surround sound 

speaker system detailed later.  Audio, video and power inputs and outputs are managed through 

an external HMD control box.  Red Light Emitting Diodes (LED) indicate ‘Power On’ and 

‘Stereo’ modes.  Standard 15 pin VGA connectors accept VGA (640 x 480, 60Hz) inputs, from 

the ChrAVE’s integrated workstation computer. 
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Figure 13.  V8 HMD (From Virtual Research, 2000) 

 

b.  Camera 
           The camera used in this implementation of the ChrAVE was a Panasonic model 

GP-US532H, with Auto Gain Control (AGC) and Electronic Light Control (ELC) features.  This 

camera was used in conjunction with a Panasonic camera control unit (CCU) model GP-

US522CU.  The camera system contains three charged couple devices (CCD), one each for the 

colors red, green, and blue.  The camera lens used was a fixed focal length (4mm) lens.  It has 

two adjustment rings which are located along the length of the lens housing.  The ring nearest the 

user is used to adjust aperture f/stop settings.  Changing the aperture to lower f/stop settings 

allows more light to reach the camera sensors, but it reduces the depth of field.  The adjustment 

ring furthest from the user is used to change the focus of the camera lens.  Unfortunately, since 

the focal length of the camera is fixed, viewing objects at varying distances can be difficult.  This 

is a critical limitation regarding the subjects’ ability to focus on objects of varying distance from 

the eye, such as the blue screen background, instrument panel, map, and kneeboard, and will be 

discussed further in the “Known Artificialities” section.   
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Figure 14.  Panasonic 3CCD Color Camera Head and CCU (From Matsushita Electric 

Corporation of America, 2002)   
 

 

Figure 15.  ChrAVE HMD and Camera 
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c.  Motion Tracker 
           An InterSense, Incorporated IS-300 Pro motion tracking system was used to track 

subject head movements in this implementation of the ChrAVE.  The IS-300 Pro is a motion 

tracking system that uses inertial sensing technology to provide motion tracking with six degrees 

of freedom (DOF).  The inertial system is comprised of an InertiaCube™ that is strapped to the 

user’s headgear and tethered by wire to the control unit.  It is nearly immune from environmental 

interference.  The system provides heading, pitch, and roll information for the user’s head 

position, which is used to determine their gaze direction.  The ChrAVE uses this information to 

determine the proper viewing scene that should be displayed on the HMD’s viewing screens. 

5.  Computers 
There are three computers that are used in the ChrAVE.  The primary computer drives 

and coordinates all aspects the virtual environment.  This computer runs the application that 

drives the background imagery, flight simulation, and position tracking features of the ChrAVE.  

A second computer manages the display of the instrument panel.  This computer receives flight 

parameter information from the primary computer via the network and displays it properly using 

the generic instrument panel discussed earlier.  A third computer receives positioning data from 

the primary computer, and plots the virtual aircraft’s position and route of flight on a map of the 

terrain database.  This provides an overhead, or ‘God’s eye’ view of the navigation performance 

in real time.  This computer also captures and records all flight data so that it can be used for 

debriefs or after action reviews with the navigator after his flight.     

6.  Signal Converters, Mixers, and Splitters 
The ChrAVE uses a number of signal converters due to the conflicting signal 

requirements of different components within the image generation portion of the system.  The 

chromakey mixer used in this implementation requires a CCIR-601 digital signal as input.  

However, the foreground imagery (real world) comes from the camera in an RGB signal format, 

and the background (virtual world) imagery comes from the CPU in a VGA signal format.  

Therefore, both the foreground RGB signal and the background VGA signal had to be converted 

to a CCIR-610 signal for input into the mixer.  Then once the foreground and background signals 

were mixed, the CCIR-610 output signal had to be converted back to a VGA (640X480) signal 

for the HMD. 
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Figure 16.  Schematic of the ChrAVE System 

 

a.  Camera RGB Signal to Digital 601 Signal Converter 
           A Leitch ADC 6801 converter was used to convert the RGB signal produced by 

the HMD-mounted camera into the digital 601 signal that is required by the chromakey mixer. 

b.  VGA to Digital 601 Signal Converter 
           An Extron Spectrum Converter was used to convert the VGA signal produced by 

the primary ChrAVE computer into the digital 601 signal that is required by the chromakey 

mixer. 

c.  Chromakey Mixer 

           The ChrAVE’s current configuration uses an Ultimatte 400 Deluxe Chromakey 

Mixer.  The mixer takes in the video signals (now converted to digital 601 format) from the 

HMD-mounted camera (real world) and the primary ChrAVE computer (virtual environment), 

mixes them and outputs the augmented reality imagery. 
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Figure 17.  Ultimatte 400 Deluxe (From www.ultimatte.com) 

 
d.  Digital 601 to VGA Signal Converter 

           A Leitch SDC-100 converter was used to convert the digital 601 signal that is 

produced by the chromakey mixer to the VGA signal that is required for input into the HMD.   

 
Figure 18.  ChrAVE  in transition to rack-mounted system. 

 

7.  ChrAVE Component Rack System 
The original configuration of the ChrAVE used a transportable cart to house many of the 

system’s components.  The system is currently transitioning to a more space efficient, more 
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easily transportable, rack system.  Some of the components that were used in the original 

implementation of the ChrAVE system are not ‘rack compatible’, such as the primary computer, 

which is a desktop tower.  As of the time this thesis was written, the ChrAVE was using 

components housed both on a rack system as well as the original transportable cart.  This is 

obviously not the most efficient or transportable configuration, but is a temporary state due to the 

time and cost of acquiring and installing new ‘rack compatible’ components.  The transitional 

state of the ChrAVE’s rack and cart in no way affected the data collected by this research. 

 

B.  SOFTWARE 

1.   VegaTM 

a.  Overview 
           MultiGen Paradigm’s VegaTM software is the scene-graph engine that renders the 

virtual imagery for the ChrAVE.  VegaTM uses a graphical user interface (GUI) application 

called LynxTM that allows the user to quickly set up the core components of a virtual scene, such 

display windows, rendering channels, objects, observers, and motion models.  Once these 

components are initially set up in LynxTM users can dynamically modify settings and 

characteristics of the virtual scene by using the application-programming interface (API).  This is 

the same brad of software used to render the ChrAVE environment produced by Lennerton 

(2002).  VegaTM was chosen to render the ChrAVE’s NVG environment based on the ease in 

which a realistic NVG environment could be produced, as well as the ability to easily affect 

visual parameters dynamically through the API.  The two key VegaTM modules involved in 

creating the ChrAVE’s NVG environment were SensorVisionTM and SensorWorksTM. 

b.  SensorVisionTM and SensorWorksTM 
           VegaTM uses both the physic-based and the non-physics, graphic rendering 

techniques.  It uses two different ‘modules’, or components to produce the scene imagery.  The 

VegaTM SensorVisionTM module performs light and material response calculations, and takes into 

account the moon position and angle, atmospheric conditions, geographic location (latitude and 

longitude), and time of day.  It uses these factors to make physics-based calculations to 

determine how the scene should be rendered using an NVG perspective.  An example of the 

SensorVisionTM GUI is shown in Figure 19. 
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Figure 19.  The VegaTM SensorVisionTM GUI 

 

The SensorWorksTM module uses non-physics, graphic rendering techniques to produce 

the details and effects of NVG imagery, such as color, fixed pattern and variable noise, light 

blooming, obscuration, and scintillation.  These two modules work together to create a complete 

NVG scene.  When both SensorVisionTM and SensorWorksTM are enabled, the scene imagery 

produced is physics-based, and when only the SensorWorksTM module is enabled the scene is 

produced using only graphics rendering techniques.  Toggling the SensorVisionTM component on 

and off through the API makes the scene very flexible in terms of the presentation of physics-

based imagery to the user.  Figure 20 shows an example of the SensorWorksTM GUI. 
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Figure 20.  The VegaTM SensorWorksTM GUI 

 

2.  C++ 
C++ was used in conjunction with the VegaTM software to implement the ChrAVE 

application.  A C++ program was written that provides a keyboard interface allowing dynamic, 

run-time access to VegaTM settings and features.  This code allows the ‘pilot on the controls’ to 

fly the virtual helicopter based on commands from the navigator, coordinates the virtual scene, 

and implements the networking code that communicates flight parameters to the computers 

displaying the instrument panel and overhead view.   

3.  Open GL 
OpenGL was used in VegaTM call-back functions to produce overlay drawings based on 

recorded navigation performances.  This includes producing triangular icons that represent 

intended, actual, and perceived aircraft locations, intended and actual flights, and a legend 

schematic. 
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IV.  METHODOLOGY 

A. EXPERIMENTAL DESIGN 

1.  Subject Pool 
The subjects used in this experiment were fifteen male U.S. military officers with ratings 

as military helicopter pilots.  The subjects were students of the Naval Postgraduate School and 

had spent varying amounts of time in a non-flying status while attending the school.  Since all 

subjects were designated pilots, they meet the expert criteria with regard to the knowledge about 

the activities of a multitasked helicopter cockpit environment.  All subjects had experience flying 

helicopters while wearing NVGs, as well as experience in over-land helicopter navigation. 

2.  Treatments 
Each subject was asked to complete an entrance questionnaire, followed by map 

preparation for the low-level, NVG route of flight, a battery of visual tests prior to donning the 

HMD, a low-level navigation flight, a battery of visual tests following the flight while still 

wearing the HMD, and an exit questionnaire and debriefing.  After all subjects had completed 

their flights, each subject was asked to evaluate the performances of their peers. 

a.  Entrance Questionnaire 
            The questionnaire (Appendix B) asks limited questions regarding subjects’ 

medical backgrounds, overall and NVG flight experience, and tries to determine each subject’s 

opinion of quantitative parameters (in terms of distances from the intended route of flight and 

navigation checkpoint identification) for conducting acceptable low-level NVG helicopter 

navigation.  A series of slides were shown to each subject which depicted (using green 

symbology) a portion of a low-level route of flight complete with navigational checkpoints.  This 

represented the intended route of flight.  Overlaid on the intended route was an ‘actual’ flight 

path (in black or red symbology).  This represented the fictional efforts of a pilot attempting to 

navigate the intended route of flight. Also depicted were fictitious navigator estimations of 

navigation checkpoint locations.  Subjects were told that the flights were records of a daytime 

flight in excellent weather.  Subjects were then asked to rank order the slides from the best 

navigation performance to the worst.  Once the rank ordering was complete, the subjects were 

asked to identify the last slide that they considered to be representative of an acceptable 

navigation performance under these conditions.  This meant that the subject considered all slides 
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ranked after the identified slide to be representative of unacceptable, or below standard 

navigation performances.  Once this slide was designated, the subjects were then told to consider 

that the slides represented flights flown at night while using NVGs (again with excellent weather 

and illumination conditions).  They were asked to once again identify the slide which represented 

the minimum acceptable navigational performance.  This provided a baseline estimation of 

acceptable performances across all the helicopter communities represented, and attempted to 

determine the relative difficulty levels of flying with and without NVGs based on the expert 

opinions of the subjects  The evaluation slides used during this portion of the experiment can be 

found in Appendix C.  They were randomly lettered and presented to the subject in no specific 

order. 

b.  Tasks 
           The tasks each subject performed can be found in Appendix B (questionnaire 

pages 4-5).  Some of the tasks (such as monitoring the radio and acknowledging a specific 

aircraft call sign) are secondary in nature to the primary task of conducting low-level helicopter 

NVG navigation but performed concurrently with this primary task.  Subjects were directed to 

perform these secondary tasks in order to more closely replicate a realistic cockpit management 

stress level and workload.  Due to the lack of available aviation resources, it is not possible to 

compare subject ChrAVE navigation performances to navigation performances of actual low-

level helicopter NVG flights.  However, it would seem reasonable to use the opinions of actual 

experienced pilots as subject matter experts (SMEs) in partially determining whether a system 

such as the ChrAVE is viable as a laboratory for continued training in helicopter virtual 

environment experiments. 

c.  Map Preparation 
            The subjects were provided appropriate resources (Appendix B, page 4) including 

scissors and tape to completely prepare their map for low-level helicopter NVG navigation of the 

intended route of flight.  Aircraft flight parameters were specified (Appendix B, page 4) to allow 

subjects to correctly prepare their maps with regard to time/distance calculations, as well as to 

establish a mindset for the tempo of the flight.  Subjects were given no time limit to conduct their 

map reconnaissance and map preparation.  
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d.  Vision Tests 
            A battery of vision tests were administered twice during the experiment.  The 

unhooded battery was conducted just prior to the subject donning the ChrAVE headgear.  This 

battery provided a baseline measurement of the subjects’ normal visual acuity and color vision.  

The hooded battery was conducted following the flight portion of the experiment, and gives a 

measure of the degree of degradation of the subjects’ visual acuity and color vision while 

wearing the ChrAVE’s headgear. 

In each battery there were three vision-related tests.  The visual acuity test was the first 

vision test administered, and was intended to show any apparent degradation in visual acuity 

while hooded.  Subjects were given a simple eye chart (figure 22) created in Microsoft Word 

consisting of lines of random letters, and asked to read aloud the smallest row of letters they 

could read.  The lines of letters were in courier font and ranged in size from 50 points to 8 points.  

Subjects were allowed to hold the chart as close to their eyes or the HMD-mounted camera as 

needed.  The second vision test administered was the color identification test, which was 

intended to reveal any apparent degradation in the ability to correctly perceive colors while 

hooded.  The simple eye chart in figure 22 contains six horizontal, evenly spaced lines of similar 

length with a width of three points.  Each line is colored differently, from top: blue, red, green, 

orange, purple, and black.  Subjects were asked to state the perceived color of each line from top 

to bottom.  Subjects were again allowed to put the chart as close to their eyes or the HMD-

mounted camera as desired.  
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Figure 21.  Visual Acuity and Color Identification Chart (Not to scale, From Lennerton, 

2002) 
 

 Blue Red Green Orange Purple Black

R 0 255 0 255 128 0 

G 0 0 255 102 0 0 

B 255 0 0 0 128 0 

Table 4.   R-G-B definitions of the colored lines used in the color identification test (From 
Lennerton, 2002) 
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 The third and final vision test was the Dvorine Color Vision Test.  The Dvorine Color 

Vision Test is a bound set of color plates.  Each plate contains a number made up of colored dots 

against a background of contrasting dots.  People with normal color vision have no problem 

identifying the number contained on the plate, while those with color vision deficiencies often 

cannot determine the number contained on the plate.  The purpose of this test is to determine the 

extent to which wearing the ChrAVE HMD degrades the color vision of subjects.  Subjects were 

bound set of color plates, and asked to identify the number displayed on each of the first ten 

plates.  Subjects were permitted to put the plates as close to their eyes or camera as needed, 

however the plates had to remain at a right angle while being viewed.  All other established 

administration procedures (as described by Dvorine, 1963) were enforced.  Delays of more than 

five seconds resulted in an identification failure for that plate. 

e.  Virtual Navigation 
           After completing the unhooded vision tests, subjects were seated in the mock 

cockpit.  They were then given a brief tutorial on the cockpit structure, the ChrAVE headgear 

and how to adjust its fit, and the components of the instrument panel.  During the instrument 

panel portion of the tutorial, the subjects were shown each of the instrument panel’s component 

gauges, as well as how each display was interpreted.  This was an important step in their 

familiarization with the ChrAVE’s cockpit, given the generic nature of its construction, and 

ensured they could correctly extract the information displayed by the instruments.  The subjects 

then donned the ChrAVE headgear and were allowed to become familiar with the viewing the 

virtual terrain, the instrument panel, and their map and kneeboard.  Due to the fixed focal length 

of the HMD-mounted camera (through which all real and virtual objects were viewed), it was 

necessary to move their head forward slightly in order to gain proper focus of the instrument 

panel.  Similarly, the map had to be held approximately one foot away from the camera in order 

to achieve proper focus.  Once subjects became comfortable with these characteristics of the 

ChrAVE, they were given a short familiarization virtual flight.  This familiarization flight lasted 

approximately 3-5 minutes, and was terminated when the subject stated he felt comfortable with 

the ChrAVE’s flight simulation parameters and cockpit procedures.  During this familiarization 

flight, subjects were exposed to turns to the left and right using both standard and half standard 

rates.  The proctor verbally made note of the length of time it took to roll into and out of these 

turns, as well as the effects each maneuver had on the instrument panel’s gauges.  Also verbally 
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noted to the subjects was the large turning radius of the ChrAVE, and the inability to view terrain 

on the left side of the aircraft.  Subjects were randomly started with either a physics-based 

imagery (SensorVision with SensorWorks modules working together) or a non-physics-based 

imagery (SensorWorks alone).  Approximately two minutes into the familiarization flight, the 

proctor changed the method of NVG imagery production.  The change was made dynamically 

(without interrupting the virtual flight), and allowed subjects to become familiar with both visual 

presentations.   

Following the familiarization flight, the subject’s position in the virtual world was 

moved to the course entry point for the route of flight for which they had prepared their maps.  

They were paused at the course entry point and allowed to establish their orientation using the 

compass, map, and the available views.  When the subject was ready, the sound file was cued 

and the aircraft began to fly.  Subjects had to listen for radio calls that were issued to their 

aircraft call sign amidst other radio traffic contained on the audio file.  The proctor noted each 

radio call that was correctly identified as directed to their aircraft call sign. Approximately every 

two minutes, a voice on the audio file gave subjects a verbal command to plot their position and 

orientation.  Additionally, subjects had to provide navigational instructions to the proctor. 

This flight lasted approximately 20 minutes.  In that time, the subject was 

supposed to negotiate as much of the course as possible, while maintaining the aircraft’s position 

as close to the intended route as possible.  Once again each subject was randomly started with 

either physics-based or non-physics-based imagery, and the imagery was switched dynamically 

approximately 10 minutes into the flight.  Once twenty minutes had expired, the subject was 

notified that the flight would be paused.  After completing the hooded visual tests, the subject 

was allowed to remove the ChrAVE headgear, and asked if he had to re-adjust to the real world.  

The subject was then allowed to dismount the ChrAVE and begin the exit questionnaire. 

f.  Exit Questionnaire 

           The exit portion of the questionnaire can be found in Appendix B, pages 8-10.   

g.  Debrief 

           Upon completion of the questionnaire, the subjects were invited to view their 

performance on the top-down viewing monitor.  The proctor would point out observations and 

key points during the flight.  During the debrief, the proctor made notes of subject comments.  

These comments often provided valuable insights into the thoughts and opinions of the subjects 
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related to their ChrAVE experience.  The subjects’ actual and intended flight paths, as well as the 

actual, intended, and perceived position plots of each subject’s navigational performance are 

depicted in Appendix D.  

h.  Subject Peer Evaluations 
            Once the final subject had completed his virtual flight navigation, each member of 

the subject pool was presented with the top-down views of the entire subject pool’s navigation 

performances (Appendix D).  They were asked to evaluate each navigational performance with 

the following three instructions: 

i.  The subject’s ability to maintain their actual flight path within an acceptable 

proximity to the intended path.  Evaluate the subject’s ability to fly the intended route and hit the 

intended checkpoints.  On the provided overhead views, the intended route and checkpoints are 

green while the subject’s flight path is red.  Rate the performance using a 1 to 7 scale, with a '1' 

indicating highly acceptable while '7' indicates not acceptable.  This criterion is independent of 

the following criteria, meaning the proximity to the intended flight path is to be evaluated 

independently of whether or not they knew where they were. 

 ii.  The subject’s ability to correctly estimate their location.  Evaluate the 

subject’s ability to accurately locate and plot his position (including heading) on demand.  

Aircraft icons of matching color help to pair a subject’s estimated and actual locations.  Where 

icons are far apart, white lines are drawn to help identify the pairs of icons.  Rate the 

performance using the same 1 to 7 scale as the previous criterion.  This criterion is independent 

of the preceding criteria, meaning the accuracy of the position estimation is to be evaluated 

independently of whether or not they were on the intended route.  

iii.  The overall navigation performance.  Rate the overall performance as 

acceptable (‘A’) or not acceptable (‘N’).   

 

i.  Day vs. NVG Evaluation Standard Comparison 
            It would seem intuitive that conducting helicopter low-level navigation is more 

difficult under NVG conditions than normal daylight conditions.  However, there is nothing 

formally published in Army or Navy standards that changes the standards for navigation 

performance while using NVGs.  The Army’s published task standard (Task 1025, Navigate by 
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Pilotage and Dead Reckoning, TC 1-209 and TC 1-212) for both the OH-58D and UH/EH-60 

specifies standards that must be maintained during navigation in terms of maximum distance 

allowed from intended route of flight (300 meters and 800 meters respectively).  These 

publications address the increased degree of difficulty in performing the same task under 

night/NVG conditions by making the statement “More detailed flight planning is required when 

the flight is conducted at night”, but do not change the specified allowable distance standards.  

Despite there being no published change in standard, there may be a subjective, de facto change 

in standard as evaluators compensate for the higher degree of difficulty of navigating under 

NVGs.  Questions 22-24 (Appendix B, pages 2-3) attempt to quantify the existence of such a 

subjective shift in evaluation standard.  Subjects are asked to rank a series of slides that represent 

portions of recorded helicopter low-level navigation performances in order from best to worst.  

Each slide depicts an intended route of flight overlaid with an actual route of flight (representing 

the recorded navigation performance).  These slides can be found in Appendix C.  Once the 

subject rank orders the slides, they are asked to identify the slide that represents the minimum 

acceptable performance if the flight was flown during daylight, good weather conditions.  This 

slide then represents the pass/fail line by that subject's opinion.  Keeping the slides in the same, 

original, rank-order, the subject is then asked to identify the slide that represents the minimum 

acceptable performance if the flight was flown during NVG, good weather and illumination 

conditions.  If the slide is lower in rank (considered a worse performance in terms of the original 

rank ordering), then implicitly the subject is stating that the evaluation standards for acceptable 

performance of helicopter low-level navigation are lower for the task conducted under NVGs 

than it is under daytime conditions.  The degree of the standard shift will be measured by the 

difference in rank order between the two slides selected as minimum acceptable standards.    

B. KNOWN ARTIFICIALITIES 
There are several known artificialities associated with performing tasks in the ChrAVE.  

These artificialities can be described as parts or characteristics of the simulation that are different 

from what a person would experience while performing the task in the real world, in an actual 

helicopter.  In most cases, these artificialities represent limitations that were met as the prototype 

was developed, as a result of technological limitations.  In other cases they resulted from design 

decisions related to the ChrAVE system’s overall goals of cost effectiveness and component 

availability (using COTS equipment rather than custom or proprietary components).  This 
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section will identify the major artificialities that have been recognized and accepted for the 

current implementation.  Future ChrAVE implementations will attempt to reduce or eliminate 

many of these artificialities.   

1.  Visual Artificialities 
There are several visual artificialities encountered when using the ChrAVE with a 

daytime visual scene, and others that only become apparent when using the ChrAVE with a 

simulated NVG scene.   

a.  Color Vision 
           Most subjects perceive real world color in the ChrAVE with very minor 

deviations.  These color deviations occur along the foreground or real world video pipeline.  This 

pipeline consists of the camera, RGB to digital 601 signal converter, the chromakey mixer, the 

digital 601 to VGA signal converter, and the HMD.  The HMD likely has the most effect on 

perceived color deviations to the user.  The mixed real world and virtual world signal that is 

displayed by the HMD is also relayed (split) to a monitor for the proctor’s use.  The image 

displayed on the monitor has less color deviance than the HMD, indicating that the pipeline prior 

to the HMD has less of a contribution to color deviation than the display device itself.  The 

monochrome green imagery produced by the simulated NVG imagery tends to make this effect 

more pronounced, casting a greenish glow to white or lightly colored objects (such as maps) 

viewed in the foreground.  This effect can be lessened by manually adjusting the foreground 

settings on the chromakey mixer.  Future upgrades to the quality of HMD used in the ChrAVE 

will likely reduce or eliminate this artificiality. 

b.  Gain Control 
            The ChrAVE’s HMD-mounted camera is equipped with an automatic gain control 

which automatically adjusts the brightness level of the camera’s signal.  The HMD display is 

dramatically affected by these automatic gain adjustments.  The user can perceive alternating 

periods of real world brightness and darkness with rapid head movements that go from repeated 

head down to head up.  This effect is amplified during NVG simulation, and sky illumination can 

become so bright that the contrast and detail of the virtual terrain becomes difficult to perceive.  

This effect may be a byproduct of the requirement of the current ChrAVE implementation to 

ensure the blue chromakey material is highly illuminated.  As previously mentioned, the lighting 

configuration of the ChrAVE is the most temperamental aspect of the system’s hardware.  This 
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artificiality is likely caused by the difficulty of ensuring the material is lit adequately for 

identification as the correct chromakey color, but not so well illuminated as to cause camera gain 

problems.  Future implementations of the ChrAVE may utilize a recently developed back-lit 

chromakey material, which will likely reduce or eliminate this artificiality. 

c.   Fixed Focal Range 
            The ChrAVE’s HMD-mounted camera’s lens has a fixed focus range that allowed 

objects within arms reach to be in focus while more distant objects were out of focus.  Similarly, 

focusing the camera on distant objects made near objects difficult to focus on.  This artificiality 

created probably the most dramatic effect on subjects.  The ChrAVE’s HMD is occluded, 

meaning it is not possible to view anything except through the HMD’s display which is fed by 

the HMD-mounted camera.  As the camera’s focus is necessarily set to focus properly on the 

virtual terrain, viewing near objects became difficult.  In order to see near objects in proper 

focus, subjects were forced to move them within approximately 12-14 inches from the camera 

lens.  Subjects had to lean forward in the seat to properly read instrument panel gauges, and lift 

the map close in front of the camera to achieve proper focus on terrain features and map 

markings.  Some subjects had a difficult time adjusting to these artificialities, while others 

adapted rather quickly and without difficulty.  It appears the effect of this artificiality is very 

individual-dependent.  Future ChrAVE implementations may experiment with auto-focus 

cameras, or cameras with lenses that have wider focal range settings in an attempt to alleviate 

this artificiality. 

d.  Limited Field of View 
            The NVG visual simulation application set the FOV at 40 degrees (horizontal), 

which is what is offered by most NVGs in use by military pilots today.  As with real NVGs, such 

a small FOV does not allow for a peripheral view to be presented to the user.  Users commonly 

compensated for this narrow FOV with extra head movements, this is similar to the NVG 

scanning techniques taught to military pilots to overcome the limited FOV of NVGs.  The 

aggregate VE FOV was limited to the coverage of the blue screen which was approximately 

from the user’s eleven o’clock to his four o’clock.  Some navigators felt that this was too much 

of a limitation to terrain association since they could not readily see terrain features on the left 

side of the aircraft.  Future ChrAVE configurations may attempt to provide a wider aggregate 

FOV to eliminate this artificiality. 
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2.  Auditory Artificialities 
There are several auditory artificialities associated with the ChrAVE.  The ChrAVE 

produces all audio cues via a set of surround sound speakers with a subwoofer, to include 

helicopter noise and radio traffic.  In an actual cockpit, helicopter (rotor and engine) noise would 

be ambient (external to the flight helmet), and communications would be heard through the 

integrated headphones of the flight helmet.  Additionally, the volume of the communications 

cannot be adjusted separately of the helicopter’s rotor and engine noise.  None of the subjects 

commented on the audio aspects of the ChrAVE, possibly due to their focus on the visually 

demanding task of low-level helicopter NVG navigation. 

3.  Vestibular Artificialities 
The ChrAVE is a non-motion visual simulator.  The visual perception of movement 

coupled with the lack of vestibular cues could cause users to experience confusion or simulator 

sickness, although none of the subjects for this experiment reported such experiences.  If the 

ChrAVE was used shipboard there could also be problems associated with unsynchronized 

motion, caused by the vestibular perception of the ship’s motion not matching the visual cues 

experienced by using the ChrAVE.  Additional research should be conducted to determine the 

impact of this artificiality on a shipboard environment. 

4.  Ergonomic Artificialities 

a.  Cockpit 
            The intentionally generic design of the cockpit environment may have an impact 

on pilot performance.  As previously mentioned, the ChrAVE prototype’s cockpit is intended for 

use by all branches of the U.S. military, and for pilots who are rated in several different models 

of aircraft.  It must also be said that although the ChrAVE is currently configured to perform as a 

helicopter training device, it could be re-configured with relative ease to simulate virtually any 

type of vehicle.   

b.  Instrument Panel 
            The size of the instruments, their relative positioning on the instrument panel, 

their color, and their methods of indicating flight information are again not specific to any one 

model of helicopter.  These differences could make a difference in a pilot’s performance by 

changing or disrupting his scanning pattern.  A pilot’s scanning pattern is the order, priority and 

interval in which he visually scans the instruments in order to gain and maintain his situational 
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awareness.  In particular, integrating a clock into the instrument panel should be a priority, as 

this would eliminate the need to scan a separate area for flight/navigation information.  Future 

implementations of the ChrAVE, should it be shown to be a viable training device, may more 

closely model individual aircraft instrument panels in order to eliminate this artificiality. 

c.  NVG / HMD Difference 
            The current ChrAVE implementation’s headgear is somewhat bulky and 

uncomfortable.  Although the visual display offered by the HMD is somewhat similar to what is 

provided by NVGs (see Visual Artificialities above), the feel of wearing the headgear is not 

similar to wearing NVGs.  Using a modified flight helmet may be a more ergonomically similar 

method of fitting the necessary devices (camera, HMD, head-tracker) to pilots’ heads, but this 

would present its own set of issues related to audio and communications.  The ability to provide 

a ‘look under the goggles’ capability for viewing the instrument panel, map, and kneeboard 

should be a top priority for future ChrAVE implementations. 

5.  Flight Profile Artificialities 
            There are several artificial aspects of this implementation of the ChrAVE.  The airspeed 

is kept at a constant rate (in this experiment, 90 knots), and airspeed is exactly equal to 

groundspeed.  Additionally, the view or ‘sight picture’ of the pilot is adjusted during turns to 

give visual indications of the aircraft banking, however the pitch attitude of the virtual aircraft 

never changes from a perfectly level attitude.  Finally, the ChrAVE’s flight simulation model is 

artificially limited to either half-standard rate or standard rate turns, and these turns are executed 

by the software with precisely the same control touch.  At this point in the development of the 

ChrAVE system for use as a helicopter flight training device, the level of flight simulation 

fidelity was considered less important to the research being conducted than was the visual 

presentation of the virtual terrain.  Once the ChrAVE has been shown to be viable, 

improvements in the fidelity and realism of the flight dynamics will be explored.   

6.  Flight Task Artificialities 
            There would almost never be a situation where a U.S. military pilot was asked to perform 

NVG low-level helicopter navigation in a single-pilot mode (without a co-pilot).  Two or more 

aircrew members use crew coordination procedures, such as division of duties to perform this 

type of complex task.  While the experiment attempted to limit the navigator’s responsibilities to 

navigation and communication only, it does not account for the additional navigation assistance 
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that would normally be provided by a co-pilot.  Normally the pilot at the controls would assist in 

identifying terrain or other features that could aid navigation found on his side of the aircraft.  As 

part of normal crew coordination conducted while performing this type of navigational task, the 

navigator describes what the flying pilot should see; the flying pilot confirms the description or 

states what he observes.  Additionally, a navigator may instruct the pilot at the controls to adjust 

the aircraft’s heading to parallel a road or other linear feature, or to fly directly over a bridge, 

hilltop, or other terrain feature.  These capabilities are lacking in this experiment, partially due to 

the prototypical state of the ChrAVE, and partially due to the need to isolate the navigator 

(subject) as he performs this task.  Other crew coordination issues include the lack of co-pilot 

assistance with communications tasks, and the lack of co-pilot assistance with monitoring the 

instrument panel and status of the aircraft.  Monitoring and communicating with radios appears 

to vary between different helicopter communities, if not from aircrew to aircrew.  Experienced 

navigators may be able to handle the responsibility for answering radio calls in addition to 

navigational duties.  Less experienced navigators are normally allowed to focus strictly on 

navigating, with other crew members responsible for radio communications.  In this experiment, 

the navigator was given communications responsibility in order to try to simulate the stress and 

multi-tasking that is normally experienced by aircrew members operating a real helicopter.  

Assistance with monitoring the status of the aircraft can greatly aid the performance of a 

navigation task by augmenting the navigator’s scan and thereby reducing his workload.  For 

example, a navigator may be looking at the map or outside the cockpit at the terrain while the co-

pilot gives periodic heading, altitude, airspeed, or elapsed time updates.  To ensure subject 

navigational performances were not biased by the level of co-pilot assistance, the only co-pilot 

feedback they were given was confirmation of the flight commands they issued to the pilot on 

the controls.   

 

C. DATA COLLECTION 
Data was collected via the questionnaire, recorded flight data, subjects’ maps, debriefs, 

and subjects’ peer evaluations. 

1.  Questionnaire 
Questionnaire data was manually recorded onto Microsoft Excel™ spreadsheets for 

statistical analysis. 
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2.  Recorded Flight Data 
The ChrAVE automatically saves all flight parameter data to a text file.  This file can 

then be used in a separate application to produce an overhead view of the route of flight for 

debriefing subjects, as well as for importing into a Microsoft Excel ™ spreadsheet for statistical 

analysis.  This data was used to compare actual versus subject perceived locations and average 

distances from the intended route of flight and checkpoints.  This data was also used to compare 

the differences in performances for physics-based and non-physics based visual presentations of 

the NVG imagery. 

3.  Subjects’ Maps 
Subject maps were used to obtain their plotted position data.  These plotted positions 

represented the subjects’ best determination of their location at the exact time they were asked to 

do plot their position on their maps.  These positions can then be compared for accuracy to their 

actual positions using the recorded flight data.  

4.  Debriefs 
Detailed notes recorded the opinions and statements of subjects gathered verbally 

immediately following their participation in the experiment.   

5.  Subjects’ Peer Evaluations 
Subjective peer evaluations were recorded for statistical analysis using a Microsoft Excel 

™ spreadsheet.  This data was used for comparison with stated navigation evaluation standards. 
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V.  RESULTS 

There were four major phases of data collection used in the experiment conducted to 

support this research:  a pre-flight portion of the questionnaire, performance of a virtual flight, a 

post-flight portion of the questionnaire, and a peer evaluation task.  This chapter is organized by 

data collection phase in order to give structure to the results. 

A. QUESTIONNAIRE 
The pre-flight portions of the questionnaires provided some interesting insight into the 

backgrounds, opinions, and subjective standards of the aviators who participated in this 

experiment.  The post-flight portions (including subject verbal debriefs) yielded subject opinions 

of the ChrAVE as an NVG training system, comparisons of the ChrAVE versus TopsceneTM, the 

realism of the tasks performed in the ChrAVE, and the  realism of the NVG imagery presented to 

them. 

1.  Pre-flight Portion of the Questionnaire 
The U.S. military helicopter pilots who participated in this experiment averaged 1506.25 

flight hours (minimum 700, maximum 3150, standard deviation 874.78), and 306.67 NVG flight 

hours (minimum 40, maximum 700, standard deviation 194.20).  Seven of the pilots were 

Marines, three were from the Army, one from the Navy, and one from the Air Force.   
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Figure 22.  Subject Pool Experience 

 

Another important factor related to the subject pool is the issue of currency.  A pilot is 

considered to be ‘current’ if they have flown their aircraft within a certain amount of time 

(specified by each branch of the service), and ‘not current’ if they have exceeded that amount of 

time.  Each service has its own currency time limits defined by regulations.  The currency clock 

starts the day after the pilot performs aircrew duties, and is not re-set until he flies again.  Pilots 

who become ‘not current’ (by exceeding the allowable time between flights) are normally 

required to receive a currency evaluation flight with an instructor pilot in order to restore his 

currency (reset his clock).  By U.S. Army Aviation standards (Training Circular 1-210), a pilot 

must have at least one hour of flight time within a consecutive 60 day period in order to be 

considered as ‘current’ in their aircraft, and within a 45 day period in order to be considered as 

‘current’ for flying NVGs.  Since the subject pool for this experiment was drawn from an 

academic environment where all of them are in a temporary non-flying status, only one of the 

pilots who participated in the experiment could be considered to be ‘current’ flying NVGs.  The 

average time since the last flight with NVGs for the subject pool was 13 months (minimum 1 

month, maximum 29 months).  Additionally, U.S. Army standards (TC1-210) require pilots who 
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exceed 180 days between NVG flights to undergo extensive retraining.  Because the skills 

required to fly while wearing NVGs is recognized as being so technically difficult and perishable 

(skills deteriorate quickly if not practiced), a pilot who exceeds 180 days between NVG flights 

gets the same level of retraining that a pilot reporting into a unit for the first time from flight 

school would receive.  According to these rules, all but one of the pilots used in this study have 

exceeded 180 days since their last NVG flight, and would therefore require re-training.   

2.  Evaluation Standards Task 
            The questionnaire asked several questions directed at defining subjects’ individual 

evaluation standards related to low-level helicopter navigation, and subjects were also tasked to 

evaluate a set of fictitious navigational performances.  Figure 24 shows the data from questions 

18 and 19.  Question 18 asks how far (in meters) a navigator can stray from his intended route of 

flight and still be considered acceptable.  Question 19 asks how far (in meters) a navigator can be 

from specific checkpoints along the route and still be considered acceptable.     
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 Figure 23.  Subject Low-Level Flight Navigation Standards 
The average standard threshold for enroute navigation accuracy was 458.33 

meters (maximum 1000, minimum 100, standard deviation 302.89).  The average standard 

threshold for checkpoint accuracy was reduced to 266.67 (maximum 800, minimum 100, 
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standard deviation 201.51).  These questions do not specify flight mode (day, night, NVG), and 

are intended to obtain the subjects’ navigational standards without regard to flight condition.  

The subjects consistently (with the exception of Subject 11) indicated that there was less 

tolerance for navigational error at checkpoints than at other points along the route of flight.   

Question number 21 asked subjects to rank seven criteria in order of their 

importance to evaluating navigation performance.  Figure 25 compares the responses to this 

question across the subject pool.  A score of ‘1’ indicates that the subject ranked the question as 

the most important (shortest bars), while a score of ‘7’ represents the least importance (longest 

bars).  The criteria the subjects considered to be most important is knowing location by means of 

dominant terrain feature, while they considered being off the intended route of flight but 

correcting to hold the least amount of importance in evaluating a navigation performance.  This 

seems to validate using knowledge of one’s current location as the primary consideration for 

evaluating navigational performance, which is the criteria used in this thesis for evaluating 

subject ChrAVE navigation performances. 
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The standard evaluation task performed by subjects asked them to rank order 15 

slides containing portions of fictitious navigational performances.  These slides are lettered for 

identification, and are located in Appendix C.  Once the slides were rank ordered, subjects were 

asked to identify the slide that represented what they consider to be the minimum acceptable 

performance, beyond which they would consider all performances to be unacceptable, for a 

daytime low-level flight with good weather.  Keeping the slides in the same rank order, subjects 

were then asked to designate the slide they considered to be the minimum acceptable 

performance, beyond which they would consider all performances to be unacceptable, for an 

NVG flight with good weather and illumination conditions.  Figure 26 shows the results of this 

evaluation task.  The primary purpose of this evaluation task was to capture the degree of shift of 

the threshold between conditions.  In other words, how much of a difference is there in the 

subjective standards of experienced aviators?   
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Figure 25.  Day vs. NVG Evaluation Standards 
 

 The results of this evaluation task clearly indicate that most of the subjects 

tolerate more error for navigation performances if they consider that the task was conducted 

while using NVGs.   The average amount of evaluation standard shift (measured in number of 
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slides rated as acceptable) was 1.75 (standard deviation 1.66) for the subject pool as a whole, 

indicating that on average the subject pool would allow two (out of 15) more performances to be 

considered as acceptable if flown with NVGs versus daytime conditions.  That is an average 

standard shift of twelve percent.  A third of the subjects (4 out of 12) maintained the same 

standards for acceptable performance of the navigation task regardless of flight condition.  Of the 

subjects who shifted their evaluation standard, two thirds (8 out of 12) averaged 2.63 more NVG 

performances (maximum 5, minimum 1, standard deviation 1.30) considered as acceptable than 

during daytime conditions.  That is an average standard shift of 18 percent.  None of the subjects 

considered more performances acceptable for daytime conditions than for NVG conditions, 

indicating a consensus opinion that navigating with NVGs is at least as difficult as daytime 

navigation. 

 

3.  Post-Flight Review of ChrAVE Performance 
The final portion of the questionnaire was administered to subjects after they had finished 

performing their low-level NVG navigation flight task in the ChrAVE.  This part of the 

questionnaire was intended to gather data on the subjects’ opinion of the realism and validity of 

the tasks (comparing the tasks conducted in the ChrAVE to those same tasks as conducted in the 

actual aircraft), and the quality and realism of the visual representation of NVG imagery.  This 

portion of the questionnaire also attempted to draw out subject opinions of any differences 

between the realism of the NVG imagery produced by physically-based means and that of the 

imagery produced by non-physically-based techniques. 

a.  Task Realism 
            Question number 25 asked subjects if the navigation task as performed in the 

ChrAVE was realistic.  Seven subjects agreed that it was realistic (58.3 percent), four disagreed 

(33.3 percent), and one strongly disagreed (8.3 percent).  Of those that disagreed, most pointed to 

factors discussed in the ‘Known Artificialities’ section of this thesis, specifically the lack of a co-

pilot assisting with navigation information and the difficulty associated with viewing near 

objects through the camera.  Other questions attempting to draw comparisons to real world task 

performance were fairly inconclusive in their results, with widely scattered responses that 

averaged to an opinion of ‘neither agree nor disagree’.  These questions included whether or not 

the ChrAVE performed as well as other visual simulators they had used in the past, if the cockpit 
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management skills required of the ChrAVE were similar to those required in real aircraft, and if 

the HMD felt similar to what was experienced when flying with NVGs.  When asked if using the 

the ChrAVE would be beneficial to trainees undergoing initial NVG qualification training, three 

of the subjects responded with ‘strongly agree’ versus one subject who strongly disagreed, but 

again the average response was only slightly more positive than ‘neither agree nor disagree’.  

Subjects’ opinions of the ChrAVE’s potential as an NVG training device that could assist 

experienced crews in maintaining their NVG flight skills when unable to actually fly the aircraft 

had exactly the same average result of slightly higher than ‘neither agree nor disagree’, with only 

one subject who strongly agreed and none who strongly disagreed.   

b.  Comparison with TopsceneTM 
            Of the 12 subjects who participated in this research, only five were familiar with 

TopsceneTM.  This fact also speaks to the availability of TopsceneTM at the user level, given that 

less than 50% of the subject pool were familiar with this simulation tool.  Interestingly, four out 

of those five felt that the ChrAVE’s NVG imagery was more realistic than that of TopsceneTM’s, 

with the fifth stating he neither agreed nor disagreed.  Despite the extremely small sample size, 

this statistic is especially surprising considering that the ChrAVE uses only COTS equipment, 

rather than the proprietary, custom architecture found with TopsceneTM.  Question number 39 

asked subjects to rate the realism of eight different portions of the ChrAVE’s flight task on a 1 to 

5 scale, with a rating of 1 indicating strong disagreement that a task was realistic, and a rating of 

5 indicating strong agreement that a task was realistic.  Subject responses seemed to agree that 

the tasks of preparing the map, maintaining awareness of their location, terrain association, 

navigation, and monitoring the radio calls were fairly realistic.  Subject responses averaged 

‘neither agree nor disagree’ that the other tasks performed in the ChrAVE were realistic.  The 

subject pool’s average responses are displayed in Figure 26. 
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Figure 26.  Subject Opinions of ChrAVE Task Realism 

 
c.  Physics-based Versus Non-physics Based Imagery 
Questions 27 and 28 asked subjects the degree to which each of the two types of 

imagery was realistic.  Again the scale for subject responses was from ‘1’ to ‘5’, with a ‘1’ 

indicating strong disagreement that the imagery was realistic, and a ‘5’ indicating strong 

agreement that the imagery was realistic.  Figure 27 shows a comparison of subject opinions of 

the two types of NVG imagery overall.  There was no recognizably consistent difference in how 

realistic the subjects considered either method of NVG imagery production.  The average rating 

for non-physically based imagery was 3.58 (standard deviation 0.79), which correlates to a 

subject pool average opinion that is slightly closer to ‘agree’ than ‘neither agree nor disagree’ 

that the imagery was realistic.  The average rating for physically based imagery was 3.67 

(standard deviation 0.85), which has a similar interpretation of subject opinion, although slightly 

more positive. 
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Figure 27.  Subject Opinion of NVG Imagery Realism  

 

 The navigation performance data for each subject is drawn from only the first portion of 

flight, in order to ensure independence of the flight performance data between visual production 

treatments (physics based versus non-physics based imagery).  In order to more closely link 

subject opinion of imagery realism during the performance evaluation portion of each subject’s 

flight, Figure 28 displays the subject pool’s opinion of non-physics based imagery realism for 

only the first portion of flight, while Figure 29 displays the subject pool opinion of physics-based 

imagery realism for only the first portion of the flight. 
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Subject Opinion of Non-Physics Based Imagery During Performance Data Collection
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Figure 28.  Subject Opinion of Non-Physics Based Imagery Realism 
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Figure 29.  Subject Opinion of Physics-Based Imagery Realism 
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 In both cases, five out of six subjects agreed that the imagery was realistic.  One subject 

responded that he ‘neither agreed nor disagreed’ that the non-physics based imagery was 

realistic, while one subject disagreed that the physics based imagery was realistic.  The 

difference in subject opinion of realism between these two methods of imagery production is 

statistically insignificant.   

 As described in Chapter II of this document, the existence of visual noise is an important 

characteristic of NVG imagery.  Question number 36 asks subjects if the visual noise 

characteristics of the NVG scene were modeled accurately.  Since the same visual noise effects 

were used for both methods of imagery production, this question was asked without regard to 

type of imagery or reference to individual portions of flights.  Nine out of twelve subjects 

indicated that the visual noise effects were realistic, two disagreed, and one declined to respond 

due to his perceived lack of adequate experience to make a judgment on this issue.  The final two 

questions on the questionnaire asked subjects to compare the ChrAVE’s level of cockpit 

workload and stress to the levels they’ve experienced in a real aircraft.  Five of the subjects felt 

the ChrAVE’s cockpit workload was less than found in a real cockpit, four felt it was greater 

than in a real cockpit, and three responded that the levels were about the same.  Details gathered 

during subject debriefs indicated that for those who felt the workload was greater in the 

ChrAVE, the major reasons were the lack of co-pilot assistance and the inability to look under 

the HMD to view near objects.  Six of the subjects felt that the stress level of the ChrAVE was 

less than that found in a real cockpit, while five felt it was about the same, and one felt the stress 

was greater in the ChrAVE. 

 

B. SUBJECT PERFORMANCE DATA 

1.  Evaluation Criterion 

One of the most challenging aspects of conducting this experiment was determining what 

criteria to use to evaluate subject navigation performances.  When pilots perform navigational 

tasks in the aircraft, a great deal of information is exchanged between the navigator and the 

instructor pilot (who is also the pilot on the controls) that cannot be captured by simply recording 

flight data.  For instance, a navigator may demonstrate verbally to the instructor pilot that he 

knows exactly where he is despite being off the intended route of flight.  Similarly, an instructor 

pilot may know that a navigator is disoriented due to statements or actions inside the cockpit, and 
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yet the aircraft may still be on its intended course or over a checkpoint with little or no error.  

Identifying a checkpoint or distinct terrain feature is often done by the navigator simply pointing 

it out to the instructor pilot.  It is impossible (at least at this point in the system’s development) to 

accurately capture this kind of information in the ChrAVE.  If the navigator is wildly off course 

and not correcting, it is probably safe to judge him as disoriented, however this will most often 

not be the case, especially given the relatively short amount of time subjects spend navigating in 

the ChrAVE.  It is easy to determine in the ChrAVE whether or not the ‘aircraft’ is off the 

intended route of flight; it is difficult to know if the subject is off course but knows where he is, 

is off course and does not know where he is, is on course and knows where he is, or is on course 

but still doesn’t know his position.  In an attempt to overcome this lack of information and still 

gain a snapshot of navigator perception of position, navigators were asked to plot their position 

on the map with a pencil at approximately two-minute intervals.  Their navigation performance 

will be primarily evaluated by the difference between these plotted positions and their actual 

position in the virtual world as recorded by the ChrAVE system.  Data presented earlier in this 

chapter (Figure 24) supports using this criterion as a measure of effectiveness; since it 

corresponds to the criterion the subjects themselves felt most important (knowing one’s location 

by dominant terrain feature) when evaluating a navigation performance.  It is important to note 

that there is an unknown amount of error in the accuracy of the subjects’ plotted positions.  

When plotting their position, their mental and visual scanning is interrupted, and they may have 

induced plotting error by trying to rush to re-establish their scanning patterns.  Error may also be 

produced if attempting to plot their positions during turns or maneuvers of the virtual aircraft. 

2.  Raw performance data 
Each subject was directed to plot his position on the map five times during the first ten 

minutes of his flight, and Table 5 compares the differences between each subject’s actual 

position and their perceived position.  

 

 

 

 

 



   67

Subject Pool Overall--Both Types of Imagery   

Self-Location Error (in meters)       

Subject Plot 1 Plot 2 Plot 3 Plot 4 Plot 5 Average Physics 
1 3158 1631 5167 7133 5178 4453 No 
2 541 3959 768 3929 5316 2903 No 
3 952 566 1204 275 492 698 No 
4 1315 7840 7572 9734 9016 7095 Yes 
5 3598 2489 530 4161 7440 3644 No 
6 2755 3356 3104 6440 12638 5659 Yes 
7 1355 1071 918 379 257 796 No 
8 823 1400 4921 7692 5947 4157 Yes 
9 1115 1556 2389 2247 4375 2336 Yes 
10 578 4212 5548 11280 14490 7221 Yes 
11 2155 4074 4299 7983 7509 5204 Yes 
12 1594 2265 1389 824 1611 1537 No 

Average 1662 2868 3151 5173 6189 3809   
 

Table 5.   Subject Self-Location Error by Imagery Type 
 

Figure 30 separates the subject pool performances based on the type of imagery (physics- 

based or non-physics- based) they were presented, in terms of the amount of error (in meters) 

between subjects’ real and estimated positions in the virtual world. 
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Comparing Self-Location Error by Imagery Type
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Figure 30.  Comparison of Subject Self-Location Error by Imagery Type 

 

Based on the small sample size of this data, a Wilcoxon Rank-Sum test was performed on the 

results to determine if there is statistical evidence that there is a difference between performances 

based on type of imagery presented.  The test returned a p-value of 0.0931, indicating that at a 

10% level of significance, there is weak of a difference.  It does appear that the average errors 

separate over time.  Wilcoxon Rank-Sum tests were performed on the subject errors for Plot 1 

and Plot 5 separately.  There is no evidence of a difference at Plot 1 (p-value 0.59), but 

significant difference at Plot 5 (p-value .026).  This may mean that if the navigation task had 

been performed over a longer period of time, a difference would be seen.  The implication of the 

higher rate of error over time of the physics-based group is that over time they tend to get further 

off course faster than the non-physics based group.  One explanation for this higher error rate 

could be the continuous, cumulative nature of navigation.  Each point along a navigation route is 

inherently dependent on earlier route decisions, headings, and speeds. It may be that the physics-

based group may not be getting the visual cues they need to perform the navigation task, and 

over time the lack of these visual cues may be accumulating, and thereby increasing the amount 
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of error of their self-location knowledge.  Figure 31 shows the difference between subject group 

self-location errors over time. 

Comparison of Average Self-Location Errors
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Figure 31.  Subject sub-group error plotted over time 

 

One factor that must also be considered when examining the performance error found 

between the imagery treatment groups is the difference in experience level of the two groups.  

The subjects were randomly divided into two groups, which determined whether they were first 

presented the physics or non-physics imagery treatment.  This random division was done prior to 

the subject providing any background data, other than own verbal confirmation as to their status 

as a helicopter pilot with NVG over-land terrain navigation experience.  It is apparent that there 

is a difference in the flight and NVG experience levels of the two groups, and this may influence 

the amount of error between the two groups.  Figure 32 shows the flight and NVG experience 

levels of the two subject groups. 
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Figure 32.  Comparison of Subject Sub-Group Experience Levels 

 

     Another important factor that may influence the difference between these two treatment 

groups is the branch of service of the subjects.  In order to obtain the most subjects possible for 

this experiment, all military helicopter pilots in attendance at the Naval Postgraduate School 

were asked to participate, and the four major branches of service are represented in the subject 

pool.  After ranking the flights in order of the most accurate to least accurate self-location plots 

during the navigation flight, the three Army pilots ranked first, second, and fourth.  The top two 

performances (both Army) were also familiar with the National Training Center at Fort Irwin (an 

Army training facility from which the terrain database used in the virtual flight was drawn) and 

had also actually flown there.  Most Army pilots spend virtually all of their NVG flight time at 

terrain flight altitudes over land, so the task most closely paralleled the normal mission profile of 

this portion of the subject pool.  It would make sense that these subjects would have an 

advantage over other subjects based on the task chosen for evaluation.   Although this factor 

reduces the ability to draw objective statistical conclusions from the data, it also points to the 

realism of the task as performed in the ChrAVE.  The subjects with the most experience in 

performing the task in the real world were the most successful in the virtual representation of this 

task. 
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3.  Peer Evaluation 
  OVERALL PERFORMANCE EVALUATIONS 

Subject 
Number 001 002 003 004 005 006 007 008 009 010 011 012 
Subject 001   A A N N N A A A N N A 
Subject 002 N   A N N N A N A N N A 
Subject 003 N A   N A N A A A N N A 
Subject 004 N A A   N N A N A N N A 
Subject 005 N N A N   N A N A N N A 
Subject 006 N A A N N   A N A N N A 
Subject 007 N A A N A N   N A N N A 
Subject 008 N N A N N N A   A N N A 
Subject 009 N N A N N N A N   N N A 
Subject 010 N A A N N N A A A   N A 
Subject 011 N A A N N N A N A N   A 

EV
AL

U
AT

O
R

S 

Subject 012 N A A N N N A N A N N   

 

Table 6.   Peer Evaluation Results 
 

Table 6 shows a summary of the peer evaluation results.  Each subject’s rating of his own 

performance was thrown out, as indicated by the diagonal row of blackened cells.  It is 

interesting that each performance was almost unanimously evaluated as either acceptable (A), or 

not acceptable (N) by all of the other subjects independently.  In fact, only the performances of 

Subject 2, Subject 5, and Subject 8 had other than unanimous evaluations.  This seems to 

indicate that although there is subjectivity in evaluation of this task, the subject pool overall 

agrees as to where that subjective standard threshold exists.  This is especially interesting 

considering the diverse backgrounds, service components, and mission profile of the subject 

pool. 
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VI.  CONCLUSIONS 

By looking at the data provided by this experiment at face value, it appears that the 

ChrAVE does produce simulated NVG imagery that has adequate realism and image quality to 

have potential for use in NVG aviation training.  Overall, eighty percent of the subjects 

considered the ChrAVE’s representation of NVG imagery to be realistic.  That same number of 

subjects indicated that the modeling of the visual noise associated with NVG imagery was 

modeled accurately.  Bearing in mind that the subjects are SMEs with an average of 1506 total 

flight hours and 306 NVG flight hours, these statistics would seem to validate ChrAVE’s NVG 

imagery as having potential for use in a training role.  Continuing ChrAVE development as 

COTS technology continues to improve will likely make the NVG image quality even more 

realistic.  In the two years since the ChrAVE prototype was built there have already been 

significant advances in the image quality (resolution) and available horizontal FOV of COTS 

HMDs alone, not to mention the improvements of COTS graphics cards and CPU chip speed that 

have exceeded Moore’s Law.  As the COTS components that contribute to the ChrAVE’s 

capability improve, so should the degree of its viability as a NVG training device. 

 The navigation performances of the subject pool also seem to indicate that the ChrAVE 

has potential for use as an NVG training device.  Although several of the subjects became 

disoriented very quickly, that is not out of line with what would likely happen in a real aircraft to 

pilots with such a long period of time since their last NVG terrain navigation flight.  None of the 

subjects were able to maintain the average minimum acceptable distance from the intended route 

of flight of 458 meters, and yet peer evaluations of the subject pool show that the pool was 

amazingly consistent in their evaluations of acceptable and unacceptable performances.  Given 

(as already stated) that there is a subjective shift in evaluation standards from day to NVG flight 

conditions, this may indicate that the subjects have also shifted their evaluation standards to 

account for the artificialities associated with the ChrAVE’s current configuration.  To some 

degree, this also validates the ChrAVE as a viable NVG training device because the peer 

evaluation results are so consistent.   
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Unfortunately, the large amount of variance and small sample size of the available 

subject pool used for this experiment makes drawing statistically significant conclusions based 

on their performances impossible.  Similar research conducted with a subject pool containing 

less varied backgrounds, flight experience, and NVG experience may yield more statistically 

definitive data with which to answer the research questions posed in this thesis in a more 

quantitative manner.  
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VII.  FUTURE WORK 

There are several interesting and important research questions that were either untenable 

due to technological limitations in existence when the experiment was conducted, or simply 

beyond the scope of this thesis.  The results of this thesis can accurately be described as a “stake 

in the ground” for NVG work in the ChrAVE.  It will serve as a baseline for later studies and 

research.  Even as this study was unfolding, there were several new ideas and different products 

released that may lead to additional research and progress in developing the ChrAVE as an NVG 

training device.  This list of future research question only scratches the surface of the work yet to 

be done in this area, but will hopefully spur the next round of investigation and analysis on the 

ChrAVE’s potential for NVG training. 

One of the major complaints registered by subjects during debriefs was the difficulty they 

had adapting to viewing near objects through the head-mounted camera.  When using actual 

NVGs in a real helicopter, pilots simply look under the image intensifier tubes with their unaided 

eyes into the dark cockpit to view near objects.  They usually use supplemental lighting to 

illuminate unlit objects such as paper maps or kneeboard material.  This supplemental lighting is 

normally a very small, NVG compatible light, such as a lip-light mounted to their flight helmet’s 

microphone boom. The light is actuated by pressing against a small pressure sensitive switch.  

Viewing the instrument panel is also done by looking under the goggles, with the gauges and 

switches either backlit or otherwise illuminated by NVG compatible cockpit lighting.  Some 

subjects had no problem adjusting their scanning techniques to viewing these objects through the 

camera; others felt it dominated their performance in a negative manner.  At the time of this 

study, there was no viable method to create a dark cockpit that would allow a realistic ‘look 

under’ capability while still allowing adequate lighting of the blue chromakey material required 

for camera registration.  Recently however, a product has been developed that will allow for 

back-lighting the chromakey material.  Further research should be conducted into the viability 

and effects of using a backlit ChrAVE implementation that would allow pilots to use their 

normal scanning techniques to view objects inside the cockpit.  This would remove one of the 

chief artificialities encountered by subjects, lending higher fidelity to the ChrAVE’s NVG 

simulation capability as well as greater insight into its NVG training potential. 
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   Another interesting area to investigate is the level of detail at which the ChrAVE’s 

NVG imagery becomes inadequate--at what point does the NVG scene provided by COTS 

software and hardware become unacceptable or unrealistic?  The virtual world used in this 

experiment was intentionally non-descript, containing only dessert terrain with no man-made 

items, vegetation, or other features.  The intent was to create a baseline acceptable NVG imagery 

in order to prove initial viability of the ChrAVE as an NVG training device.  Future work could 

use a more varied, interesting terrain database, or add additional objects such as vehicles, 

buildings, or vegetation to attempt to define the limitations of the ChrAVE’s NVG imagery.  

Another way to try to define these limitations might be to vary the altitude in the virtual world.  

This experiment used a constant altitude of 200 feet above ground level.  Tactical helicopter 

flight normally requires operating at much lower altitudes.  Operating at lower virtual flight 

altitudes would create a need for greatly increased levels of detail in order to produce NVG 

imagery with fidelity, and it would be important to determine if an altitude threshold exists, 

beyond which the ChrAVE’s NVG scene is unacceptable.   

Preliminary work has now been done to show the ChrAVE’s viability for both daytime 

and NVG flight conditions.  A logical progression will eventually require testing of the ChrAVE 

against actual pilot performances in aircraft.  If the resources can be coordinated, this would be 

the ultimate test for the ChrAVE, and could make great progress in answering many questions 

regarding the ChrAVE’s potential as a training device.   
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INTRODUCTION 
 
This document contains a cognitive task analysis (CTA) of rotary wing tactical 

overland flight to objective in support of the VEHELO implementation of VIRTE 
Demonstration 1. The intended use statement indicates that this is the general task that we 
wish to train as it fits inside more complex tasks such as Non-combatant Evacuation 
Operations (NEO), Combat Search and Rescue (CSAR), Tactical Recovery of Aircraft 
and Personnel (TRAP), Downed Aircrew Recovery Procedure (DARP), and Special 
Operations Insert/Extract (INFIL/EXFIL). The CTA has been encoded using a variant of 
conventional GOMS (Goals, Operators, Methods, and Selections) notation. There are also 
several cue inventories that are specific to certain points in the CTA where critical 
decisions are to be made.  

 
The document is presented in four primary parts. We begin with a narrative 

description of a specific TRAP mission for context of the overall objectives of the 
training system. This is followed by a GOMS representation of a generic TRAP mission. 
This is a high level representation intended to give context to the underlying task of 
rotary wing tactical overland flight to objective. TRAP is only one of several mission 
profiles that fits the intended use of the VEHELO training system. Figure 1 illustrates 
how Tactical Overland Flight to Objective is a common element of several mission 
profiles which is in part, why it was selected as the training objective for VEHELO.  

 
The third section is the high level task analysis indicating the fundamental high 

level task blocks that must be executed for successful task completion. The first part of 
this representation is a TRAP scenario showing how Tactical Overland Flight to 
Objective fits into the full mission profile. The second part is a high-level view isolating 
the navigation portion of the task. In both cases, these representations purposely eliminate 
detail in order to provide context for the final task analysis section.  

 
The next section is the detailed CTA notation describing all goals and sub-goals 

inherent to the task. Where multiple methods may be used to accomplish a goal, a 
SELECT statement indicates what the choices are. To the left of the GOMS notation are 
comments describing the element or decision criteria. Lastly, critical decision points are 
further described in terms of a cue inventory which lists what cues are essential for the 
task and how those cues are used in the decision making process. 
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Lennerton is a CH-53D pilot. The overland flight analysis was completed by Commander 
Joe Sullivan, USN. Commander Sullivan is an H-60 pilot. The night vision goggle 
extension of this document was written by Captain Del Beilstein, USA.  Captain Beilstein 
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TACTICAL RECOVERY OF AIRCRAFT AND PERSONNEL 
MISSION SCENARIO DESCRIPTION 

 
This section will describe in narrative form, what a TRAP mission entails in order 

to set context for the CTA to follow. The example is very simple and does not include 
contingencies as would likely be the case in an actual mission. We assume here that there 
is little to no enemy resistance so that we can focus on the elements of the TRAP. The 
scenario employs many possible features for such a training simulation system. The 
scenario refers in detail to the figure. 

 
The key aspects of a TRAP mission include: 
 

• Mission planning: This includes all intelligence briefings, weather and 
illumination forecast and analysis, map preparation, night vision goggle (NVG) 
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operational checks, and aircraft preparation. We assume in this document that 
standard mission planning tools such as N-PFPS or JMPS are available. 

• Tactical Overland Flight: This is the in-flight task of moving overland to the 
objective area using available navigation tools such as map, aircraft gauges, clock, 
etc.   

• Recon/TRAP team insertions: Assuming that the helicopter is unable to land in 
the immediate vicinity of the downed crew, it must insert the TRAP team nearby. 

• Ground movement to friendly contact. After insertion, the ground-based TRAP 
team must then navigate overland on foot to the objective point.  

• Authentication and recovery. On arriving at the objective point, the downed crew 
must authenticate itself to avoid placing the TRAP team in danger. Then the 
recovery can take place.  

• Ground movement for extraction. The ground TRAP team must now move back 
to the landing zone for extraction. 

• Employ CFF (call for fire) / CAS (close air support) to delay the enemy. If there 
is resistance or if the ground team needs to delay the enemy to allow for the 
extraction to take place, a CFF may be utilized.  

• TRAP/Recon team extraction. The ground TRAP team and downed crew are 
recovered by the helicopter and are returned safely.  
 
Background 
A TRAP mission has been ordered as a result of a Marine Corps AH-1W Cobra 

crashing into the territory of a known enemy warlord. The Cobra traveled several miles 
after receiving small arms fire before being forced to ditch. The downed pilots’ were able 
to communicate with the other aircraft in the flight, a UH-1N Huey. The Huey was 
unable to land or provide direct assistance due to the terrain. The crash site is located in a 
dense, triple canopy jungle. Visibility is extremely limited. It appears the Cobra came to 
rest in the trees. One pilot appears to have escaped with minor injuries while the other 
may have a broken back. There is no fire or smoke at the crash site. 

 
The closest suitable landing zone (LZ) is approximately three nautical miles (NM) 

east of the crash site. Another LZ is approximately 8 NM southwest of the crash site. A 
suitable observation post exists four NM to the Northeast. Due to the density of the jungle 
and the enemy’s present location to the north, the enemy is not expected to converge on 
the crash site for eighteen hours (This time estimate assumes the enemy knows the 
location of the crash site.). 

 
Scheme of Maneuver 

• A reconnaissance team will be inserted into LZ Falcon via landing or fast rope (as 
terrain/vegetation allows), move to OP Eagle and report any enemy movement or 
contact.  In addition, the team will coordinate any close air support (CAS) as 
needed. 

• The TRAP team will be inserted into LZ Falcon via landing or fast rope (as 
terrain/vegetation allows), move to the crash site, and extract the pilots. 

• If a medevac is necessary, it shall occur at the crash site, via a jungle canopy 
penetrating hoist. 
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• The Sparrow Hawk team shall return to LZ Falcon for extraction via landing or 
SPIE rig. (special personnel insert/extract) 

• The recon stay team shall return to LZ Falcon for extraction via landing or SPIE 
rig. 
 
Reconnaissance team: 6 Pax—requires one CH-46E aircraft (Pax = passengers) 

TRAP team: 18 Pax—requires two CH-46E aircraft 
 

Other aircraft required will be on 15 minute strip alert on ARG (amphibious 
readiness group) shipping and will include two sections of Harriers for CAS, one hoist 
capable SH-60 for medevac, and a section of AH-1W Cobras for both escort and CAS. 
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TACTICAL RECOVERY OF AIRCRAFT AND PERSONNEL 
COGNITIVE TASK ANALYSIS 

 
Assumptions 

• Analysis begins at walking to aircraft and ends when aircraft lands back aboard 
ship. 

• Mission originates and terminates on shipping. 
• Delayed, planned TRAP vice an immediate internal TRAP. 
• Written from a CH-46E perspective. 
• Helicopter flight consists of CH-46E assault helicopters and AH-1W attack 

helicopters. 
• This is an aircrew recovery TRAP mission vice aircraft recovery. 

 
Acronyms 

ABCCC – Airborne Battlefield Command and Control Center 
ISOPREP – Isolated Personnel Report 
OSC – On Scene Commander 
RADALT – Radar Altimeter 
TACAN – Tactical Air Navigation 
ALE – Expendable Countermeasures 
APR – Radar Detector 
ALQ – Infrared Countermeasures 
LZ – Landing Zone 
ITG – Initial Terminal Guidance 

 
References 

Doctrine for Joint Combat Search and Rescue, Joint Pub 3-50.2, 26 Jan 
1996. 

 
Joint Tactics, Techniques, and Procedures for Combat Search and Rescue, 

Joint Pub 3-50.21, 23 Mar 98 
 

Capt Joseph B. Woods, USMC, Instructor, Marine Aviation Weapons and 

Tactics Squadron One 

 
GOAL: Execute-TRAP ; TRAP mission will be 

ordered  
GOAL: Review-ISOPREP-data ; Isolated Personnel Report – 

used to authenticate the aircrew after 
they have been located 

Review-ISOPREP  
  
GOAL: Launch-aircraft  
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GOAL: Start-up  
Execute-checklist  
GOAL: Radio-checks  

Uncovered ; check radios in plain (non-
secure) mode 

Covered ; check radios in secure 
(encrypted) mode 

  
GOAL: Check-survivability-equipment  

MODE-IV ; secure IFF (identification, 
friend or foe) 

ALQ ; component of aircraft 
survivability equipment (ASE) – 
infrared jammer 

APR ; component of ASE – missile 
radar detection device 

ALE ; component of ASE – 
countermeasure dispensing system 

  
GOAL: Meet-go/nogo-criteria  

[SELECT: Continue-method  
Call-troubleshooter-method  
Go-to-backup-method]  
  

GOAL: Verify-NVG-function-checks  ; check image quality and 
proper focus, also check for no-go 
faults 

                     [SELECT: Continue-method  
                     Adjust-NVG-settings-method  
                     Replace-NVG-method]  
  

GOAL: Load-TRAP-team ; non-aircrew embark after 
rotor engagement and systems 
checks. 

Load-team  
Radio-for-clearance  

Take-off  
  
GOAL: Rendezvous 

Linkup-flight 
; aircraft in the same flight 

may not take off from adjacent spots 
on the ship 

  
GOAL: Controlling-agency-check-in  

Check-out-tower  
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Check-in-center  
Check-in-air-defense  
Check-in-ABCCC  

  
GOAL: Inbound-routing  

[SELECT: Primary-route-method  
Alternate-route-method]  

  
GOAL: Penetration-checks ; checks to ensure aircraft is 

configured for flight in hostile territory. 
Testfire ; ensure weapons operative 
Lights-off ; to avoid beaconing enemy 
RADALT-off ; active source of radar energy 
TACAN-receive-only ; active source of 

electromagnetic energy 
ALQ-high-power  
APR-on  
ALE-armed  

  
GOAL: Avoid-enemy-fire  

Return-fire  
Evade  
Call-escorts  
Call-combat-air-patrol  

  
GOAL: Check-in-OSC  

Radio-OSC  
  
GOAL: Escorts-push-ahead  

Escort-push  
  
GOAL: Locate-aircrew  

[SELECT: Radio-method  
Visual-signal-method]  

  
GOAL: Authenticate-aircrew ; ensure enemy is not 

spoofing calls as crew. 
[SELECT: ISOPREP-method  
Code-letter-method  
Code-word-method  
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Code-color-method  
Visual-signal-method]  

  
GOAL: LZ-go/no-go-criteria  

[SELECT: Go-method  
No-go-method  

[SELECT: Escorts-engage-method  
All-for-reinforcement-method  
Abort-method]]  

  
GOAL: Assault-helo-inbound  

Assault-IP-inbound  
  
GOAL: Land-in-LZ  

Find-LZ  
Wind  
ITG  
[SELECT: Land-method  
Wave-off-method]  

  
GOAL: Recover-downed-crew ; based on the mobility of the 

crew being recovered and terrain, 
choose the most expedient method 

[SELECT: Crew-mobile-&-location-known-
method 

 

Keep-TRAP-team-method  
Board-aircrew-method  

Crew-immobile-or-location-unknown-method  
Deploy-TRAP-team  
Launch-helos  
Hold-in-holding-area  
TRAP-team-contacts-crew  
Helos-back-to-LZ  
Board-team-&-crew]  

  
GOAL: Depart-LZ  

Launch-helos  
  
GOAL: Outbound-routing  

[SELECT: Primary-route-method  
Alternate-route-method]  
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GOAL: Depenetration-checklist ; return aircraft configuration 

appropriate for flight in friendly territory 
Secure-weapons  
Lights-on  
RADALT-on  
TACAN-on  
Secure-ALQ  
Secure-APR  
Secure-ALE  

  
GOAL: Agency-radio-calls  

ABCCC  
Air-defense  
Center  
Tower  

  
GOAL: Recover-aircraft  

Coordinate-landing-with-tower  
Land-aircraft  
 
 
 

HIGH-LEVEL COGNITIVE TASK ANALYSIS OF       
ROTARY WING TACTICAL OVERLAND FLIGHT TO OBJECTIVE 

 
This is the high-level representation only. Details of each component within this 

representation can be found in the following sections. Each of the primary sub-goals 
represented here: Complete-flight-planning-operations, Complete-pre-flight-operations, and 
Complete-in-flight-navigation-procedures is described in its own section to follow. 

 
 

GOAL: Complete-rotary-wing-tactical-overland-flight-to-
objective 

 

; generic task description to 
include 
TRAP/CSAR/NEO/INFIL/EXFIL 

 
  
GOAL: Complete-flight-planning-operations ; typically ready-room 

activities; navigation component of 
detailed mission planning, including 
time enroute, anticipated track and 
fuel required 

GOAL: Acquire-navigation-materials ; often available digitally 
using JMPS 
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GOAL: Conduct-map-study  
GOAL: Conduct-map-preparation ; annotate maps with route 

and timing information 
  

GOAL: Conduct-NVG-pre-operational-checks ; using NVG operator’s 
manual 

  
GOAL: Complete-pre-flight-operations  

GOAL: Configure-cockpit-for-navigation ; arrange maps and 
kneeboard checklist to facilitate rapid 
scan and effective navigation. 

GOAL: Configure-aircraft-for-dual-ship- NVG-
flight 

 

GOAL: Conduct-preflight-navigation-system-
initialization 

 

  
GOAL: Complete-in-flight-navigation-procedures  

GOAL: Navigate-to-initial-point  
GOAL: Navigate-to-next-waypoint ; at each checkpoint, perform 

cockpit maintenance duties including 
a check of planned versus actual 
timelines. 

GOAL: Maintain-orientation ; this is the basic default 
method, in absence of any higher 
priority task, PNAC attempts the best 
possible update of plotted position 

GOAL: Adjust-speed-for-arrival-time  
GOAL: Adjust-course-if-required  

GOAL: Execute-Magellan-procedures ; procedures for lost aircraft, 
may involve mission abort 

Repeat-until-complete  
  

 
 
 

PLANNING PHASE COGNITIVE TASK ANALYSIS
 Overland <TRAP/CSAR/NEO/INFIL/EXFIL> Mission 
 
Assume the pilot has been given specific mission objectives and constraints to 

include aircraft configuration, crew load, area of operation, and mission support. 
 
First primary objective is to complete the planning phase of the task. This 

involves acquiring maps, aerial photos, intelligence data, etc. that will be used for 
planning flight paths, spider routes, and assumed accuracy and location of assumed 
threats.  
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GOAL: Acquire-navigation-materials  
  

SELECT: Map-study-method  
Acquire-correct-map ; multiple scales if available 

Aerial-photo-method  
Acquire-aerial-photo  

Satellite-photo-method  
Acquire-satellite-photo  

Combined-method ; preferred method assuming all are 
available 

Acquire-all-available-assets  ; either paper or JMPS 
  
GOAL: Conduct-map-study   
  

GOAL: Conduct-legend-study ; study the legend for all specifics to 
be used in next phase 

Determine-horizontal-scale  
Determine-elevation-scale  
Determine-units ; in meters, feet. etc.  
Calculate-conversion ; to bring into aircraft units 
Determine-contour-interval  
Determine-vegetation-types  
Determine-cultural-features  
Determine-populous-areas ; high intensity lighting makes NVG 

use difficult in vicinity of populous areas 
Determine-magnetic-variation  

  
GOAL: Conduct-detail-map-study ; pre-route planning activity 

Locate-threats ; based on current intelligence 
(JMPS) 

Plot-threats  
Locate-area-of-interest ; e.g. landing zone 
Plot-area-of-interest  
Locate-current-flight-hazards ; e.g. power lines, (JMPS/ECHUM) 
Plot-current-flight-hazards  
Determine-SAFE-areas  
Plot-SAFE-areas  
Compute-threat-areas ; JMPS 
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GOAL: Analyze-threat-envelopes  

Rotary-wing-threat-envelope  
Fixed-wing-threat-envelope  

  
GOAL: Analyze-terrain-features ; based on what is available 

SELECT: Prominent-
recognizable-checkpoints-method 

 

Prominent-limiting-features-
method 

 

Prominent-guiding-features-
method 

 

Combination-method ; always the preferred method 
  
                GOAL: Analyze-NVG-flight-

considerations 
; if the mission will/could be flown 

under NVG conditions 
                    Checkpoint-analysis  ; ensure key features can be 

identified under NVG/low lighting conditions 
                    Avoid-flying-directly-toward-

light-sources 
; use doglegs to avoid flying directly 

at high intensity lighting (i.e. cities, moon) 
                    Analyze-moon-position-and-

angle 
; consider effects of shadows  

  
GOAL: Select-navigation-points-

for-primary-ingress-route 
; navigation fixes (turn points along 

route) are selected from cue list  
Calculate-distance-of-ingress-route  

Calculate-time-of-ingress-route  
Calculate-fuel-for-ingress-route  

  
GOAL: Annotate-map-&-

kneeboard-card 
 

Anticipated-track  
Anticipated-progress-interval-

marks 
;’tick’ marks to be used in flight to 

judge progress along track; useful for 
estimating terrain features that should be in 
view at any particular time along route 

User-specific-navigation-aids ;e.g. highlighting specific contour 
intervals 

Doghouse-information ;for each leg, maps are normally 
annotated using a doghouse shaped box for 
each route leg.  This information includes 
heading to next checkpoint, groundspeed, 
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fuel ladder information and time to next 
checkpoint, 

  
GOAL: Select-navigation-points-

for-secondary-ingress-route 
 

Calculate-distance-of-ingress-
route 

 

Calculate-time-of-ingress-route  
Calculate-fuel-for-ingress-route  

  
GOAL: Annotate-map-&-

kneeboard-card 
 

Anticipated-track  
Anticipated-progress-interval-

marks 
 

User-specific-navigation-aids   
Doghouse-information  

GOAL: Select-navigation-points-
for-primary-egress-route 

; egress route will normally be 
different from ingress route to minimize the 
likelihood the enemy forces alerted during 
ingress will have an opportunity to respond 

Calculate-distance-of-egress-
route 

 

Calculate-time-of-egress-route  
Calculate-fuel-for-egress-route  

  
GOAL: Annotate-map-&-

kneeboard-card 
 

Anticipated-track  
Anticipated-progress-interval-

marks 
 

User-specific-navigation-aids   
Doghouse-information  

GOAL: Select-navigation-points-
for-secondary-egress-route 

 

Calculate-distance-of-egress-
route 

 

Calculate-time-of-egress-route  
Calculate-fuel-for-egress-route  

  
GOAL: Annotate-map-&-

kneeboard-card 
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Anticipated-track  
Anticipated-progress-interval-

marks 
 

User-specific-navigation-aids   
Doghouse-information  

Calculate-mission-timeline ;mission timeline generally uses the 
longest anticipated ingress and egress 
routes, any loiter time, and time to complete 
mission (e.g. land and pick up troops.)    

Calculate-total-fuel-required-for-
mission 

 

  
GOAL: Compare-required-fuel-

with-maximum-gross-weight 
;required fuel includes NATOPS, 

typewing, airwing and squadron mandated 
reserves 

Adjust-mission-configuration ;if the mission requires more fuel 
than can be carried due to gross weight 
constraints, either the navigation route (and 
fuel requirements) must be reduced, or the 
aircraft configuration (ordnance and crew) 
must be adjusted.  

  
GOAL: Account-for-fuel-in-route ;if the mission can not be completed 

with adequate fuel reserves the navigation 
route or mission requirements must be 
updated. 

Adjust-navigation-route  
Adjust-mission-configuration  

  
GOAL: Prepare-in-flight-guides  

  
GOAL: Prepare-kneeboard-

cards 
; possibly generated by JMPS 

Prepare-communication-
cards 

 

Prepare-brevity-code-words  
Prepare-strip-charts ; possibly generated by JMPS 

  
GOAL: Prepare-annotated-

maps 
 

Load-data-points-in-tactical-
navigation-computer-mission-data-loader 

;PFPS has the capability of loading 
a set of waypoints directly into a Mission 
Data Loader  
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PRE-FLIGHT PREPARATION PHASE 
(AIRCRAFT CONFIGURATION TO TAKE-OFF) 

Overland <TRAP/CSAR/NEO/INFIL/EXFIL> Mission 
 
Assume successful completion of planning phase tasks and all associated 

objectives. Second primary objective is to prepare the cockpit for the actual flight. This 
begins with the pre-flight preparation, and concludes with the aircraft in the air beginning 
the overland navigation component. 

 
 

GOAL: Configure-cockpit-for-navigation ; required inflight reference 
material (maps and kneeboard cards) 
must be readily accessible 

Configure-maps ; e.g. fold correctly 
Configure-kneeboard-cards  

  
GOAL: Configure-aircraft-for-dual-ship-NVG-flight  

Check-external-lighting   
Attach-chem-lights-to-aircraft ; aircraft not configured with 

external NVG compatible lighting may 
use chem lights 

  
GOAL: Conduct-preflight-navigation-system-
initialization 

 

GOAL: Conduct-preflight-checks   
Check-navigation-computer  
Check-GPS  
Check-TACAN ; Tactical Air Navigation 
Check-Doppler ; Inertial navigation system 
Check-INS  
Check-RADALT ; Radar altimeter 
Check-transponder  
Check-search-light ; for NVG 
Check-cockpit-lighting ; for NVG 
Check-compass-system  

Load-waypoints-in-navigation-computer  
Select-waypoints-to-create-primary-ingress-route  
Select-waypoints-to-create-secondary-ingress-route  
Enter-magnetic-variation-information-in-tactical- 
navigation-computer 
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GOAL: Conduct-final-NVG-function-check ; verify adequate image 
quality and proper focus 

  
GOAL: Conduct-post-takeoff-systems-checks  

Verify-navigation-equipment-operational ; from list above.  Additionally, 
verify and align compass systems. 

Conduct-navigation-to-initial-point  
Identify-ingress-point-on-map  
Identify-feature-to-aid-identifying-initial-point ; a nearby prominent 

landmark 
Scan-field-of-view-for-navigation-aid  
Locate-navigation-aid  
Positively-identify-initial-point  
Estimate-arrival-time-at-initial-point  
Adjust-speed-to-arrive-at-ingress-point-on-time  
Adjust-course-to-overfly-initial-point  
Adjust-speed-to-arrive-at-ingress-point-
according-to-timeline 

 

Use-visual-aids-to-identify-ingress-point  
Verify-ingress-point-with-cockpit-navigation-aids  

  
Select-waypoint-from-tactical-navigation-computer  
Execute-navigate-to-next-waypoint  

 
EXECUTION PHASE 

(IN-FLIGHT EXECUTION OF ROUTE) 
Overland <TRAP/CSAR/NEO/INFIL/EXFIL> Mission 

 
Assume successful completion of all preceding tasks and associated objectives. 

The last primary objective is the actual in-flight navigation component. Because we make 
no assumptions as to the length and duration of the flight, nor do we assume anything 
about the terrain in question, we assume a simple repeated procedure for each pre-
planned leg of the flight. For each leg, the navigating pilot will conduct a number of sub-
tasks involving orientation to the environment and self-location. Communication to the 
PAC (pilot-at-controls) is included. If disorientation occurs (or even if it is believed to 
have occurred), the sub-goal Execute-Magellan-procedure is entered which involves re-
orienting and getting back on route. 

 
 
GOAL: Navigate-to-next-waypoint  

Start-leg-timing  
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GOAL: Direct-flying-pilot-to-
predetermined-heading 

;the method is selected based on 
time available and visual cues present.  If 
there are fewer non-ambiguous landmark 
features in view, one of the more time 
consuming methods may be required. 
Additionally, if the PNAC cannot quickly 
identify and communicate a unique landmark 
feature, a more time consuming method may 
be required. 

SELECT: Use-landmark-method ;e.g ‘saddle to the right of the peak 
at your two o’clock’.  This method has the 
advantage that it allows the flying pilot 
flexibility on how to get to the specified 
location.  The flying pilot can proceed at his 
discretion with little further assistance; thus 
providing the pilot not at controls (PNAC) 
more time to devote to comparing terrain 
features to map representation. 

Identify-discernable-feature  
Direct-PAC-to-feature ; PAC=Pilot at controls 

Use-clock-position-method ;turns are relayed to the PAC using 
clock position calls (rather than heading) to 
minimize the inside scan requirements of the 
flying pilot. 

Specify-heading-by-clock-position ;this method places higher demand 
on the PNAC than the landmark method. 
After the initial turn, the PNAC will need to 
update the PAC quickly.  It gives the flying 
pilot little flexibility in controlling the route of 
flight. 

Using-turn-&-rollout-calls-method ;this is the most demanding method 
for the non-flying pilot since in general it 
demands complete attention for the duration 
of the turn.  Additionally, the information it 
provides to the PAC has the shortest 
duration.  The PAC will require further 
guidance quickly.   

Specify-series-of-specific-actions  
Adjust-navigation-needle-to-new-

course 
;the navigation needle is often used 

to provide both pilots a backup of the 
intended heading between fixes. 
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Check-timing ;at each checkpoint, the PAC should 
compare the anticipated time enroute with 
the actual time enroute 

Record-deviation-in-timing  
  
GOAL: Adjust-timing  

SELECT: Late-arrival-method ; i.e. time has passed and you’re not 
there yet 

SELECT: Low-confidence-in-
navigation-solution-method 

 

Defer-adjusting-speed ; you might be lost 
High-confidence-in-navigation-

solution-method 
 

Estimate-initial-increment-
in-speed-required 

; fix timing and proceed 

Direct-PAC-to-adjust-IAS ; IAS Indicated Airspeed 
Early-arrival-method ; already over checkpoint before 

specified time 
Estimate-initial-decrement-in-

speed-required 
 

Direct-PAC-to-adjust-IAS  
Verify-PAC-proceeding-correctly ;after directing a change in speed, 

the PNAC needs to follow up to ensure the 
correct change has been applied 

  
GOAL: Check-ground-speed  

Scan-cockpit-gauges  
SELECT: No-Correction-Method  

No-action-required  
Correction-method  

Direct-PAC-to-adjust-speed  
  
GOAL: Check-on-track-progress ; actual vs. planned 

SELECT: Within-limits-method  
No-action-required  

Outside-limits-method  
Estimate-required-change-in-

ground-speed-(delta-GS) 
; to minimize inside scan 

requirements, the PNAC directs the PAC 
using indicated airspeed.  The calculations 
for adjusting timing are based on ground 
speed. 
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GOAL: Calculate-new-IAS   
                     Scan-current-IAS  

Add-delta-GS-as-to-IAS    
Direct-PAC-to-new-adjusted-

speed 
 

  
GOAL: Verify-heading-is-correct ;this is a two-part correction.  The 

PNAC estimates (or, if available, scans 
cockpit instrumentation to acquire) the 
heading required to maintain track.  The 
PNAC must first determine if the PAC is 
flying the intended heading, and then verify 
that the resultant track is correct. 

Scan-gauges  
SELECT: On-heading-method  

No-action-required  
Off-heading-method  

  
GOAL: Correct-heading  

Direct-PAC-turn  
SELECT: Use-landmark-

method 
;refer to previous discussion 

concerning preferred method and resultant 
PNAC workload. 

Identify-discernable-
feature 

 

Direct-PAC-to-feature  
Use-clock-position-method  

Specify-heading-by-
clock-position 

 

Using-turn-&-rollout-calls-
method 

 

Specify-series-of-
specific-actions 

 

  
GOAL: Verify-track-is-correct  

Scan-gauges  
SELECT: On-track-method  

No-action-required  
Off-track-method  

  
GOAL: Correct-heading  



99

Direct-PAC-turn  
SELECT: Use-landmark-

method 
 

Identify-discernable-
feature 

 

Direct-PAC-to-feature  
Use-clock-position-method  

Specify-heading-by-
clock-position 

 

Using-turn-&-rollout-calls-
method 

 

Specify-series-of-
specific-actions 

 

  
GOAL: Determine-aircraft-position  

Scan-heading-&-track  
Align-map-with-aircraft-track  
Analyze-terrain-within-field-of-view  
SELECT: salient-navigation-cues-in-

view-method 
;see cue list for details on ‘salient’ 

cues 
  
GOAL: Match-navigation-feature-

with-map-representation 
 

Estimate-map-representation-
of-salient-navigation-cues 

 

Compare-estimated-map-
representation-of-features-in-view-with-
map 

 

Locate-potential-match-on-map  
Compare-map-with-feature-to-

verify 
;this may involve scanning from 

world to map multiple times.  If feature goes 
out of view, procedures starts over with 
determine-aircraft-position 

SELECT: positive-match-
method 

 

Estimate-distance-&-
bearing-to-feature 

 

Estimate-position-on-map-
based-on-distance-&-bearing-to-
feature 

 

Update-position-on-map  
Ambiguous-match-method  

Analyze-terrain-for- ;a possibly ambiguous feature that 
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correlating-feature because of it’s spatial relationship with other 
features may be used to definitively locate 
aircraft position 

SELECT: possible-
correlating-feature-in-view-method 

 

Estimate-map-
representation-of-correlating-
feature 

 

Compare-estimated-
representation-of-feature-with-
map 

 

Compare-map-with-
feature-to-verify 

 

SELECT: positive-
match-of-correlating-feature-
method 

 

Estimate-distance-&-
bearing-to-feature 

 

Estimate-position-on-
map-based-on-distance-&-
bearing-to-feature 

 

Update-position-on-
map 

 

No-positive-match-of-
correlating-feature-method 

 

Fly-time-distance-
heading 

 

Update-aircraft-
position-on-map-based-on-
time-distance-heading 

 

Continue-analyzing-
and-comparing-until-found-or-
lost 

 

No-possible-correlating-
feature-in-view-method 

 

Fly-time-distance-
heading 

 

Update-aircraft-position-
on-map-based-on-time-distance-
heading 

 

Continue-analyzing-and-
comparing-until-found-or-lost 

 

Candidate-feature-positively-
classified-as-misidentified 

;based on further analysis, the 
feature selected from field of view is 
determined NOT to be the feature originally 
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selected on the map 
  
GOAL: determine-if-any-

positive-match-can-be-made 
;one of three cases will apply:   

SELECT: feature-on-map-
identified-elsewhere-in-field-of-view-
method 

 

Estimate-distance-&-
bearing-to-feature 

 

Estimate-position-on-
map-based-on-distance-&-
bearing-to-feature 

 

Update-position-on-
map 

 

Feature-in-field-of-view-
positively-identified-elsewhere-on-
map-method 

 

Estimate-distance-&-
bearing-to-feature 

 

Estimate-position-on-
map-based-on-distance-&-
bearing-to-feature 

 

Update-position-on-
map 

 

No-match-found  
Fly-time-distance-

heading 
 

Update-aircraft-position-
on-map-based-on-time-distance-
heading 

 

Continue-analyzing-and-
comparing-until-found-or-lost 

 

  
GOAL: determine-if-lost  

Update-expected-position-
on-map-using-time-distance-
heading 

 

Align-map-with-aircraft-track  
Analyze-map-for-prominent-

feature-within-expected-field-of-view 
 

Analyze-terrain-for-possible-
match-with-prominent-feature 

 

SELECT: match-found-
method 
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Estimate-distance-&-
bearing-to-feature 

 

Estimate-position-on-
map-based-on-distance-&-
bearing-to-feature 

 

Update-position-on-map  
Plot-current-position  
Determine-navigation-

correction-required 
 

SELECT: major-
deviation-method 

 

Determine-new-
course-to-route 

 

Treat-current-
position-as-new-waypoint 

 

Execute-navigate-to-
waypoint 

 

Minor-deviation-method  
Execute-correct-

track-error 
 

No-match-found-method  
Query-crew-for-salient-

cues 
 

SELECT: no-cue-
provided-method 

 

 Execute-Magellan-
procedure 

 

Cue-provided-method  
Query-crew-for-

description-of-cue 
 

SELECT: match-
found-method 

 

Query-crew-for-
distance-&-bearing-to-
feature 

 

Estimate-position-
on-map-based-on-
distance-&-bearing-to-
feature 

 

Update-position-
on-map 

 

No-match-found-
method 

 

Execute-  
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Magellan-procedure 
Query-wingman-for-

salient-cues 
 

SELECT: no-cue-
provided-method 

 

 Execute-Magellan-
procedure 

 

Cue-provided-method  
Query-wingman-for-

description-of-cue 
 

SELECT: match-
found-method 

 

Query-wingman-
for-distance-&-bearing-to-
feature 

 

Estimate-position-
on-map-based-on-
distance-&-bearing-to-
feature 

 

Update-position-
on-map 

 

No-match-found-
method 

 

Execute-
Magellan-procedure 

 

Maintain-orientation  
  
GOAL: Scan-for-next-navigation-point ; see cue inventory 
SELECT: Follow-hand-rail-method ; usually a linear terrain feature 

Positively-identify-hand-rail-feature  
Direct-PAC-to-follow-hand-rail  
GOAL: Update-on-track-progress  

Select-on-track-landmark  
Evaluate-track-deviation  

Visible-intermediate-navigation-point-
method 

; only if you see the point 

Direct-PAC-to-navigation-point  
Verify-PAC-proceeding-to-correct-

feature 
 

SELECT: PAC-proceeding-to-
correct-feature-method 

 

Continue-to-navigation-point  
PAC-not-proceeding-to-correct-  
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feature-method 
Inform-PAC  
Direct-PAC-to-correct-

navigation-point 
 

Continue-to-navigation-point  
Proceed-through-ambiguous-area-

method 
; no useful immediate cues, so fly on 

until this changes 
Update-expected-position-on-map-

using-time-distance-heading 
 

Align-map-with-aircraft-track  
Analyze-map-for-prominent-

feature-within-expected-field-of-view 
 

Analyze-terrain-for-possible-
match-with-prominent-feature 

 

Continue-until-match-found-or-lost  
Time-distance-heading-method ; always available, use dead-

reckoning. PAC responsible for maintaining 
mean track, subject to error. 

Update-expected-position-on-map-
using-time-distance-heading 

 

Align-map-with-aircraft-track  
Analyze-map-for-prominent-

feature-within-expected-field-of-view 
 

Analyze-terrain-for-possible-
match-with-prominent-feature 

 

Continue-until-match-found-or-lost  
Execute-determine-accurate-current-

location-steps 
; essentially, ‘determine-accurate-

current-location’ becomes a default action 
Update-current-position-mark-on-map ; successful outcome of ‘determine-

accurate-current-location’ is new position 
mark on map 

Check-time-enroute  
Compare-time-en-route-with-

progress-tick-mark-on-map 
 

Compare-position-on-map-with-
plotted-track  

 

Estimate-horizontal-deviation ; locate yourself on the map and 
mark it 

Estimate-impact-on-navigation-and-
timing 

 

Estimate-impact-on-exposure  
SELECT: Course-correction-required-

method 
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GOAL: Correct-heading  
Direct-PAC-turn  
SELECT: Use-landmark-method  

Identify-discernable-feature  
Direct-PAC-to-feature  

Use-clock-position-method  
Specify-heading-by-clock-position  

Using-turn-&-rollout-calls-method  
Specify-series-of-specific-actions  

Speed-correction-required-method  
Direct-PAC-to-adjust-speed  
  

GOAL: Execute-Magellan-procedures ;the option to select will depend on 
following factors: 

Analyze-current-terrain-for-threat ;how close are enemy forces 
presumed to be and what is the level of 
confidence in troop location information 

Analyze-current-terrain-for-exposure ;if it is possible to climb without 
increasing exposure, increased altitude will 
afford more opportunity to find recognizable 
landmark 

Analyze-current-terrain-for-signature ;hovering may not be an option if 
based on power required and fuel 
constraints signature will beacon enemy. 

Analyze-timing-for-ahead  
Analyze-timing-for-behind  
Analyze-fuel-on-board-compared-to-

estimated-fuel-required 
;if fuel is near limits, landing will use 

less fuel.  Since this will likely reduce terrain 
features in view, landing is only practical if 
help is available 

Analyze-degree-of-confidence  
Analyze-potential-assistance-with-

navigation 
;is RESCORT/RESCAP available to 

help 
SELECT: Confess-method  

SELECT: Wingman-method ; if wingman is available, is he 
disoriented also? 

Initiate-radio-call  
RESCORT/RESCAP-method  

Initiate-radio-call  
Orbit-method  

Provide-orienting-feature-for-PAC  
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Attempt-to-match-terrain-feature-with-
map-representation 

 

SELECT: feature-recognized-method  
Estimate-distance-&-bearing-to-

feature 
 

Estimate-position-on-map-based-
on-distance-&-bearing-to-feature 

 

Update-position-on-map  
Plot-current-position  
Determine-navigation-correction-

required 
 

SELECT: major-deviation-method  
Determine-new-course-to-route  
Treat-current-position-as-new-

waypoint 
 

Execute-navigate-to-waypoint  
Minor-deviation-method  

Execute-correct-track-error  
No-feature-recognized-method  
Attempt-to-recognize-

prominent-feature 
 

Continue-until-abort-criteria-met-or-
match-found 

 

NOE-method  
Provide-area-for-NOE-to-PAC  
Attempt-to-match-terrain-feature-with-

map-representation 
 

SELECT: feature-recognized-method  
Estimate-distance-&-bearing-to-

feature 
 

Estimate-position-on-map-based-
on-distance-&-bearing-to-feature 

 

Update-position-on-map  
Plot-current-position  
Determine-navigation-correction-

required 
 

SELECT: major-deviation-method  
Determine-new-course-to-route  
Treat-current-position-as-new-

waypoint 
 

Execute-navigate-to-waypoint  
Minor-deviation-method  
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Execute-correct-track-error  
No-feature-recognized-method  
Attempt-to-recognize-

prominent-feature 
 

Continue-until-abort-criteria-met-or-
match-found 

 

Hover-method  
Provide-direction-to-hover-area-to-

PAC 
 

Attempt-to-match-terrain-feature-with-
map-representation 

 

SELECT: feature-recognized-method  
Estimate-distance-&-bearing-to-

feature 
 

Estimate-position-on-map-based-
on-distance-&-bearing-to-feature 

 

Update-position-on-map  
Plot-current-position  
Determine-navigation-correction-

required 
 

SELECT: major-deviation-method  
Determine-new-course-to-route  
Treat-current-position-as-new-

waypoint 
 

Execute-navigate-to-waypoint  
Minor-deviation-method  

Execute-correct-track-error  
No-feature-recognized-method  
Attempt-to-recognize-

prominent-feature 
 

Continue-until-abort-criteria-met-or-
match-found 

 

Land-method  
Determine-appropriate-LZ ;see cue chart for LZ evaluation 

criteria 
Direct-PAC-to-LZ  
Attempt-to-match-terrain-feature-with-

map-representation 
 

SELECT: feature-recognized-method  
Estimate-distance-&-bearing-to-

feature 
 

Estimate-position-on-map-based-  
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on-distance-&-bearing-to-feature 
Update-position-on-map  
Plot-current-position  
Determine-navigation-correction-

required 
 

SELECT: major-deviation-method  
Determine-new-course-to-route  
Treat-current-position-as-new-

waypoint 
 

Execute-navigate-to-waypoint  
Minor-deviation-method  

Execute-correct-track-error  
No-feature-recognized-method  
Attempt-to-recognize-

prominent-feature 
 

Continue-until-abort-criteria-met-or-
match-found 

 

Climb-method ; nap of the Earth 
Direct-PAC-to-new-altitude  
Attempt-to-match-terrain-feature-with-

map-representation 
 

SELECT: feature-recognized-method  
Estimate-distance-&-bearing-to-

feature 
 

Estimate-position-on-map-based-
on-distance-&-bearing-to-feature 

 

Update-position-on-map  
Plot-current-position  
Determine-navigation-correction-

required 
 

SELECT: major-deviation-method  
Determine-new-course-to-route  
Treat-current-position-as-new-

waypoint 
 

Execute-navigate-to-waypoint  
Minor-deviation-method  

Execute-correct-track-error  
No-feature-recognized-method  
Attempt-to-recognize-

prominent-feature 
 

Continue-until-abort-criteria-met  
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CUE INVENTORIES 
 

Environmental Cues 
Identify unique features to correlate expected position with actual position -- scan 

outside, query crew. These are used in a repeated fashion throughout the flight, but are 
particularly triggered in re-orienting and map-correlation sub-tasks. 

 
CUE DESCRIPTION 

Unique, distinguishable 
terrain feature based on three-
dimensional shape and orientation. 
(Three dimensional shape infers 
use of altitude as correlating 
feature.) 

A key characteristic of a terrain feature to 
be used as a navigation checkpoint is that it is 
uniquely identifiable. Navigation routes are 
planned such that, when practical, such a terrain 
feature is always in view. 

Unique, distinguishable 
cultural feature 

Cultural features are considered secondary 
navigation aids. Flying in close proximity to 
cultural features generally increases the exposure 
to enemy forces. Distant cultural features visible 
from long ranges and low altitudes (i.e. poles for 
power lines, water towers) are more commonly 
used than terrain features that would be 
associated with dense population areas (towns, 
highways and rivers.) The accuracy of depicted 
cultural features often relates to the likelihood of 
exposure to enemy forces. (Compare jeep trails 
with hardball roads.)  

Distinguishable location 
based on relation and orientation 
of two or more non-distinct terrain 
features 

If a single unique terrain feature cannot be 
selected, position may be determined by using the 
spatial relationship (distance and orientation) of 
more than one non-distinct terrain feature. This is 
considered a lower priority since it relies on 
keeping multiple features within the field of view 
(or coordinating with crewmembers.) Given 
cockpit visibility constraints, usually the time 
when multiple features are in view will be 
considerably less than the time a single feature is 
in view. 

Any discernible difference 
of terrain along selected 
navigation route from surrounding 
terrain 

 

In areas with little terrain relief, 
navigation may rely on subtle variations in the 
terrain selected for the navigation route. For 
example in desert terrain, it may be appropriate to 
navigate along a dry creek bed or wash. 
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CUE DESCRIPTION 
Any charted and 

discernible difference of 
vegetation along selected 
navigation route. 

Lacking other navigational cues, 
vegetation can sometimes be used as a cue. For 
example, in areas with little terrain relief but 
ample coverage by vegetation, waterways will 
often be visible based on the difference in 
vegetation along the waterway. 

 
Cockpit Cues 

 
These are cues specific to inside the cockpit to include gauges and controls.  
 

CUE DESCRIPTION 
Altitude above mean sea 

level (MSL) – barometric altitude 
Elevation of terrain features is used as an 

identifying characteristic.  Current altitude must 
be known to do this.  Additionally, pilots will 
need to judge height of terrain relative to aircraft.  
(I.e. peak at aircraft ten o’clock is 200 feet above 
aircraft.  Aircraft is at 1400’ MSL.  Peak is 
approximately 1600’ MSL.) 

Altitude above ground 
level altitude (AGL) – radar 
altitude. 

Pilot will use current altitude to judge 
distance to objects. 

Heading Magnetic heading, also depending on the 
aircraft, true heading information may be 
available.  Aircraft may also have a selectable 
navigation marker (‘bug’) that can be dialed to 
heading to fly.  If the aircraft is equipped with a 
navigation computer a needle pointing to the next 
selected waypoint may also be available. 

Track If available in the aircraft, a track needle 
should be available to verify aircraft is on correct 
heading to maintain planned track. 

Clock 
 

Used to track total time enroute as well as 
individual navigation leg timing.  Essential for 
time/distance/heading mode. 

Ground speed Required for PNAC to calculate 
maintenance of and correction to timeline. 

Indicated airspeed (IAS) Primary scan for PAC.  Required for PAC 
to maintain airspeed to aid time/distance/heading 
calculations. 

Attitude indicator Improve situational awareness and 
facilitates rapid scanning for PNAC.  For 
example, PNAC can initiate a turn and then track 
progress of turn while checking cockpit gauges or 
map. 
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CUE DESCRIPTION 
Current fuel onboard If too much fuel is used on route or 

expected delay times are exceeded, the navigation 
route may need to be changed.  Additionally, the 
procedures to follow if pilot is lost depend on 
fuel. 

Turn rate Useful for judging time required to 
complete a turn.   

 
Landing Zone Cues 

 
These are cues specific to a landing zone. These should be considered in addition 

to the Environmental Cues listed earlier. 
 

CUE DESCRIPTION 
Size Pilot must be able to determine if aircraft 

will be able to safely land and takeoff 
Slope Pilot must be able to determine (or 

approximate) if the slope of the terrain is within 
aircraft landing limits.  

Suitability Factors such as muddy or badly rutted 
landing areas and foreign object damage (FOD) 
hazards may make landing impractical. 

Wind Pilot must be able to determine wind 
direction.  This can be done with cockpit 
instrumentation (comparing airspeed and 
groundspeed) or visual aids (direction of dust and 
smoke, movement of vegetation).  Pilot must also 
be able to judge the effect of surrounding 
obstacles on wind (turbulence and loss of effect.) 

Escape routes Pilots must judge if an approach and 
departure path based on current winds can be 
safely executed with an acceptable margin of 
error and preserving a waveoff capability. 

Elevation Pressure and density altitude are required 
to determine if adequate power margin exists to 
safely conduct and approach, landing and takeoff 
after troop embarkation. 
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NVG Considerations 
 
It is significantly more difficult to conduct the Tactical Overland Flight to 

Objective task while wearing NVGs than during daytime conditions.  This is due to the 
inherent limitations and characteristics of the NVGs.    

 
Characteristic/Limitation DESCRIPTION 
Limited Field of View The limited fields of view provided by 

NVGs require pilots to continuously scan in 
order to get the visual cues necessary to 
determine self-location and relative motion.  

Reduced Visual Acuity The reduced visual acuity pilots get from 
NVGs makes identification of key features much 
more difficult. 

Monocular Vision The most important effect of monocular 
vision is the loss of motion parallax, which 
makes the determination of relative motion 
difficult.  Monocular vision also makes it more 
difficult to determine the size, shape and depth of 
objects. 

Weight of NVGs The physical weight of the NVGs causes 
a degree of fatigue, which can make pilots less 
effective. 

Shift of Focus Pilots fly with their NVGs manually 
adjusted to an infinite focal point.  This means 
they must look under the lenses of the NVGs in 
order to see maps, kneeboards, or aircraft 
instruments including the compass. 

Loss of Detail/Texture The image displayed by the NVGs offers 
less visual acuity (40/20 best case) than unaided 
viewing.  This can make terrain feature 
recognition challenging. 
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APPENDIX B. QUESTIONNAIRE  

 

 
Please read first: The following experiment and questionnaire are completely confidential. 
Nothing you do or answer will be related back to you in any manner. Thank you for your 
assistance. Please begin below the solid line and hand to the proctor when you reach “Stop 
Here”.  You may ask questions at any time.  
 
Subject Number ________ (proctor use only) 
 
Preliminary questions: 
 
1. Do you have any history of epilepsy?  Yes / No 
 
2. Are you prone to simulator sickness?  Yes / No 
 
3. Do you require corrective lenses?  Yes / No  
 
4. What is your vision uncorrected? 
 
5. Do you have any other history of eye disease or injury? 
 
6. How often do you use a computer on a daily basis? (Check one.) 
� 0-2 hours   � 2-4 hours   � 4-6 hours   � 6-8 hours   � greater than 8 hours 

 
7. Have you ever used virtual environment for training or entertainment? Yes / No 
 
8. If yes, did you use a head-mounted display (HMD)? Yes / No 
 
9. As a designated aviator, how would you rate your low level helicopter navigational skills? 

(Check one.) 
 � novice   � average   � advanced   � navigation instructor   � expert  
 
10. List all type, model, series aircraft you are or have you been qualified to fly. (Disregard flight 

school aircraft unless you were a flight school instructor.) 
________________________________________________________________________ 
________________________________________________________________________ 
________________________________________________________________________ 
________________________________________________________________________ 
 
11. About how many hours of flight time do you currently have?  __________________ 
 
12. About how many hours of night vision goggle (NVG) flight time do you currently have?  

__________________  
 
13. What is the date of your last NVG flight (month and year)?______________ 
 
14. When was your last low level helicopter navigation map preparation?             
       Month __________  Year __________    

 

 

 



114

 

15. When was your last low level helicopter navigation map flight? 
                          Month __________  Year __________   
 
16. During low level helicopter navigation do you normally use a hand held paper map (standard 

military 1:50,000)?  Yes / No 
 
17. Are you familiar with Fort Irwin area depicted on the map issued to you for this experiment? 
Yes / No 

 If yes: 
 Have you ever flown in the area? Yes / No 
 
The following questions ask your opinion of acceptable criteria for low-level navigation as it 
pertains to the terrain of the Fort Irwin area during non-tactical flight.  You may refer to your 
map at any time. 
 
18. Being within _____ meters of the intended route of flight is the threshold for acceptable and 
substandard navigational performance. 

�100   �200   �300   �400   �500   �600   �700   �800   �900   �1000   �More 
 
19. Being within _____ meters of the intended checkpoints is the threshold for acceptable and 

substandard navigational performance. 
�100   �200   �300   �400   �500   �600   �700   �800   �900   �1000   �More 

 
20. During flight between checkpoints it is acceptable for the route of flight accuracy threshold 

to decrease. 
�Strongly agree     �Agree     �Neither agree nor disagree     �Disagree     �Strongly disagree 

21. Number the following in order of importance: 
 
______ Maintaining the route of flight 
______ Accurately knowing your present location (plotting to 8 digit grid accuracy) 
______ Accurately hitting your checkpoints 
______ Being off the intended route of flight and intending to intercept at the next check 

point 
______ Knowing your location by reference to a dominant terrain feature (plotting to 4 digit 

grid accuracy) 
______ Seeing your checkpoints, but not hitting them 
______ Being off the intended route of flight but working towards it. 
  

22. Evaluation task: 
 You will be provided numerous map slides of the Fort Irwin area.  The green path is the 
intended route of flight. Green circles are intended checkpoints.  The black or red path is a 
recorded navigational performance; in other words, the black or red path defines where the pilot 
actually flew.  The black or red circles indicate where the subject identified the checkpoint.  
(Note that subjects not on the intended route of  
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flight can still correctly identify a checkpoint, and that subjects on the intended route of flight 
can mis-identify a checkpoint.)  It is your task to rank order these slides in terms of best 
navigation performance (the best performance would receive a rank of 1) to worst navigation 
performance (the worst performance would receive a rank of 15).  Consider these plots to 
represent daytime, low level (200ft AGL) flights under excellent weather conditions. 

 
      BEST<------------------------------------------------------------------>WORST 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Slide Letter                

 
 
23. Refer to your rank ordering from the last question. What do you consider the threshold 

between acceptable and substandard performance?  On the evaluation table, circle the slide 
representing the minimum acceptable navigation performance. In other words, all slides 
ranked to the right of your circled slide represent performances that you find to be 
substandard.   

  
24. Now consider that the same slides represent flights flown using NVGs, with identical 

weather conditions as the day flights, with 50-80% illumination, and 60 degree moon angle. 
Referring to your rank ordering from the last question, what do you consider the threshold 
between acceptable and substandard performance given that these were NVG flights?  On the 
evaluation table from #22, put an X immediately under the slide representing the minimum 
acceptable navigation performance. 

 
 
The Goal:   
To become sufficiently familiar with the terrain in the Ft Irwin area so as to successfully navigate 
as much of the route of flight as possible in twenty minutes, under simulated NVG conditions, by 
providing voice navigational commands while using the Chromakeyed Augmented Virtual 
Environment (ChrAVE) system. 
 
 
Your Resources: 
-2 satellite images 
 - an image of the Fort Irwin area 
 - an image concentrated on and depicting the general route of flight 
-A 1:50,000 map of the Ft Irwin area (you may write on the map) 
-A kneeboard route card (you may write on the route cards) 
-A set of map pens 
-A collection of rulers, protractors, and stencils 
-Two knee boards to use during the flying portion of the experiment 
-A clock for timing (you may want to become familiar with its operation) 
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The Tasks: 
Prepare the map:  Utilizing the information on the kneeboard route cards and the other resources 
prepare the 1:50,000 map.  You will be relying on this map during the virtual flight portion of the 
experiment.  This will be a non-tactical flight; the emphasis is on terrain association and 
navigation.  Prepare your map as though your flight will be conducted at night with NVGs.  Take 
note of key terrain such as checking features, channeling features, and limiting features 
(boundaries).  When you are comfortable with your preparation inform the proctor. 
 
Maintain awareness of your location: You will be required to plot your direction and position on 
the map on demand (approximately every two minutes).  Place an arrow (Ç) to represent your 
direction; the point of the arrow shall represent your position.  The proctor will call out a 
number for you to place by the arrow.  You will be able to refer to the map, instrument panel, the 
timing clock, and the virtual world during the flight.  Remember your view to the left will be 
limited to the edge of the blue screen.  It will be important to associate terrain on the map with 
the terrain in the virtual world in order to maintain your position.  Some (not all) roads are 
identifiable in the virtual environment.  As a rule of thumb, roads and other manmade features 
clearly identifiable in the satellite imagery are identifiable in the virtual environment.  If you are 
lost, you may instruct the pilot at the controls to orbit in order to regain your orientation.  There 
will be a three minute familiarization flight.  During this flight it will be important that you 
become familiar with giving voice commands, determine the time required to roll into and out of 
turns, and get used to the settings and imagery of the HMD.  When you are comfortable with 
these factors, the proctor will reset the ChrAVE to the starting position and you will be asked to 
navigate as much of the route as possible in the time allotted (twenty minutes). 
 
Monitor the radios:  There will be radio chatter in the Fort Irwin area.  Your aircraft’s call-sign is 
“Ugly one-two”.  You are required to answer radio calls only to your aircraft by pressing the 
button on the cyclic and saying “Ugly one-two, roger.”  Disregard all other chatter.  You may ask 
the proctor to adjust the volume for you.   
 
Direct the pilot at the controls:  During the flight portion of the experiment you will direct the 
flight of your aircraft by giving appropriate voice commands to the pilot at the controls (the 
proctor).  Directional voice commands are restricted to: 
“Left turn” / “Right turn” – These commands start a standard rate turn. 
“Easy left turn” / “Easy right turn” – These commands start a half standard rate turn. 
“Stop turn” – This command levels the wings. 
O’clock position calls  – These commands start a standard rate turn followed by and automatic 
rollout.  Turns to 6 o’clock will be right hand turns unless “Turn left to 6 o’clock” is requested.  
A turn to one o’clock means a heading change of 30 degrees, two o’clock means a heading 
change of 60 degrees, etc.   

 “Orbit left” / “Orbit right” – These command should be used only when attempting to 
reestablish your orientation.  These commands will initiate a standard rate turn that maintains 
altitude (climbs will be initiated only to avoid terrain).  Remember a full turn of 360 degrees will 
take two minutes. 
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If there is any type of problem, the terms “Game over” or “Pause game” will pause the flight.   
 
Maintain situational awareness:  There may be other activity in the Fort Irwin area while you are 
navigating.  Simply call the traffic or activity to the rest of your flight crew when you see it. 
 
Cockpit management:  Practice effective cockpit management skills.  Remember this trainer will 
be unfamiliar to you.  Plan your map folding adjustments during long straight stretches of flight.  
Organize necessary resources within your reach.  Ensure you have adjusted the HMD settings 
optimally for visual presentation as well as physical comfort. 
 
Flight parameters: 
 
Your aircraft is a ‘generic’ helicopter.  
 
You will be flying at 90 knots on a windless day.  Airspeed equals groundspeed.   
 -In one minute of flight at 90 knots your aircraft will travel 1.5 NM or 2.778 KM. 
 -In two minutes of flight at 90 knots your aircraft will travel 3.0 NM or 5.556 KM.   
 
The pilot at the controls will ‘visually’ maintain about 200 feet AGL.  However if orbiting he 
will maintain 200 feet above the highest object in the orbit path. 
 
Remember to lead your roll out calls; it takes longer to roll out from a standard rate turn than a 
half standard rate turn. 
 
Do you have any questions? 
  
 

Stop here. 
 

Notify the 
proctor. 

 



118

 

(proctor use only) 
 
 
Un-Hooded Tests: Ensure the subject knows how to use the clock. 
 
Check for history of epilepsy or proneness to simulator sickness 
 
Eye Test: 
Line:_____________________ Number correct:_________________________ 
 
Color Identification Test: 
Blue:  Pass / Fail 
Red:  Pass / Fail 
Green:  Pass / Fail 
Orange: Pass / Fail 
Purple:  Pass / Fail 
Black:  Pass / Fail 
 
Color Identification Test:  
48  67  38  92  70  
95  26    2  74  62        
     
 
Subject was hooded at time ________________. 
 
Provide instructions on HMD adjustments and a warning on twisting the inertial tracker. 
 
 
 
Flight Portion: 
Set up: 
Ensure ChrAVE is set up per NVG Experiment Instructions. 
 
Radio Calls:  Other comments: 
1st call: �Correctly heard & acknowledged Head movements:  Subtle / Moderate / Rapid  

�Not acknowledged _______________________________________ 
�Acknowledged call for others _______________________________________ 

2nd call:  �Correctly heard & acknowledged _______________________________________ 
�Not acknowledged _______________________________________ 
�Acknowledged call for others _______________________________________ 

3rd call:  �Correctly heard & acknowledged _______________________________________ 
�Not acknowledged _______________________________________ 
�Acknowledged call for others _______________________________________ 

4th call:  �Correctly heard & acknowledged _______________________________________ 
�Not acknowledged _______________________________________ 
�Acknowledged call for others _______________________________________ 

5th call:  �Correctly heard & acknowledged _______________________________________ 
�Not acknowledged _______________________________________ 
�Acknowledged call for others _______________________________________ 
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6th call:  �Correctly heard & acknowledged _______________________________________ 
�Not acknowledged _______________________________________ 
�Acknowledged call for others _______________________________________ 

7th call:  �Correctly heard & acknowledged _______________________________________ 
�Not acknowledged _______________________________________ 
�Acknowledged call for others _______________________________________ 

8th call:  �Correctly heard & acknowledged _______________________________________ 
�Not acknowledged _______________________________________ 
�Acknowledged call for others _______________________________________ 

9th call:  �Correctly heard & acknowledged _______________________________________ 
�Not acknowledged _______________________________________ 
�Acknowledged call for others _______________________________________ 

10th call:  �Correctly heard & acknowledged _______________________________________ 
�Not acknowledged _______________________________________ 
�Acknowledged call for others _______________________________________ 

 
 
Hooded Tests:  
Eye Test: 
Line:_____________________ Number correct:_________________________ 
 
Color Identification Test: 
Blue:  Pass / Fail 
Red:  Pass / Fail 
Green:  Pass / Fail 
Orange: Pass / Fail 
Purple:  Pass / Fail 
Black:  Pass / Fail 
   
Color Identification Test:  
48  67  38  92  70  
95  26    2  74  62                        
 
 
Subject was unhooded at time________________.   
Total HMD exposure:  ______________. 
 
Ask the subject if he/she had to adjust to the real world when the HMD came off?   
Yes / No                  
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Post-flight Questions: 

ChrAVE Performance 
(Select the appropriate response following each statement.) 
 
25. NVG navigation in the ChrAVE resembled the actual task of NVG navigation. 

�Strongly agree     �Agree     �Neither agree nor disagree     �Disagree     �Strongly disagree 
 
26. The ChrAVE performs as well as visual simulators I have used in the past with regard to the 

visual presentation of an NVG scene. 
�Strongly agree     �Agree     �Neither agree nor disagree     �Disagree     �Strongly disagree 

 

27.  The NVG scene presented during the first half of my flight was realistic, and closely 
modeled a real-world NVG scene. 

 �Strongly agree     �Agree     �Neither agree nor disagree     �Disagree     �Strongly disagree  
 
28. The NVG scene presented during the half portion of my flight was realistic, and closely 

modeled a real-world NVG scene. 
 �Strongly agree     �Agree     �Neither agree nor disagree     �Disagree     �Strongly disagree  
 
29. The ChrAVE required me to use cockpit management skills similar to cockpit management 

skills I use in actual aircraft. 
�Strongly agree     �Agree     �Neither agree nor disagree     �Disagree     �Strongly disagree 

 

30. If the ChrAVE was available at the unit level, I would be likely to use it. 
�Strongly agree     �Agree     �Neither agree nor disagree     �Disagree     �Strongly disagree 

 
31. The HMD I wore during the flight provided a feeling and visual presentation that was similar 

to that of wearing a flight helmet with NVGs. 
�Strongly agree     �Agree     �Neither agree nor disagree     �Disagree     �Strongly disagree 

 
32.  The ChrAVE performs as well as visual simulators I have used in the past with regard to 

NVG terrain flight navigation. 
a. �Strongly agree     �Agree     �Neither agree nor disagree     �Disagree     �Strongly disagree 

      b. �Better     �Same     �Worse 
 
33. Performing tasks in the ChrAVE would be beneficial to trainees undergoing initial NVG 

qualification training. 
�Strongly agree     �Agree     �Neither agree nor disagree     �Disagree     �Strongly disagree 

 
34. Performing tasks in the ChrAVE would be beneficial for maintaining NVG flight skills for 

experienced aircrews that are not able to fly for extended periods of time. 
�Strongly agree     �Agree     �Neither agree nor disagree     �Disagree     �Strongly disagree 

 
35.  Compared to TOPSCENE, the ChrAVE’s visual presentation of NVG imagery is: 
 �More Realistic     �Less Realistic    �About the same     �Not familiar with TOPSCENE 
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36.  The ChrAVE accurately modeled the visual ‘noise’ effects of NVGs: 
  �True    �False     �Not sure 

ChrAVE Aftereffects  
 
37. The ChrAVE made me feel queasy / nauseous. 

�Strongly agree     �Agree     �Neither agree nor disagree     �Disagree     �Strongly disagree 
 
 
38. The ChrAVE is disorienting because it is a motionless platform.  

�Strongly agree     �Agree     �Neither agree nor disagree     �Disagree     �Strongly disagree 

Experiment Tasks 
39. The tasks were realistic. 
 Preparing the map 

�Strongly agree     �Agree     �Neither agree nor disagree     �Disagree     �Strongly disagree 
 

Maintaining awareness of your location 
�Strongly agree     �Agree     �Neither agree nor disagree     �Disagree     �Strongly disagree 

 
 Terrain association 

�Strongly agree     �Agree     �Neither agree nor disagree     �Disagree     �Strongly disagree 
 

 Navigation 
�Strongly agree     �Agree     �Neither agree nor disagree     �Disagree     �Strongly disagree 

 
 Monitoring radio calls 

�Strongly agree     �Agree     �Neither agree nor disagree     �Disagree     �Strongly disagree 
 

Using NVG scanning techniques 
�Strongly agree     �Agree     �Neither agree nor disagree     �Disagree     �Strongly disagree 

 
Maintaining situational awareness / seeing other aircraft or activity 
�Strongly agree     �Agree     �Neither agree nor disagree     �Disagree     �Strongly disagree 

 
Cockpit management skills 
�Strongly agree     �Agree     �Neither agree nor disagree     �Disagree     �Strongly disagree 

 
40.  The workload in the ChrAVE was the same as it is in real world low-level helicopter 

navigation. 
a. �Strongly agree     �Agree     �Neither agree nor disagree     �Disagree     �Strongly disagree 

      b. �Less     �Same     �More 
 
41.  The stress level in the ChrAVE was the same as it is in real world low-level helicopter 

navigation. 
a. �Strongly agree     �Agree     �Neither agree nor disagree     �Disagree     �Strongly disagree 

      b. �Less     �Same     �More 
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42. What suggestions for improvements of the ChrAVE do you have?  Please add any other 
statements you may have concerning this experiment.  (If you have a comment on a specific 
question please provide the question number.): 

________________________________________________________________________ 
________________________________________________________________________ 
________________________________________________________________________ 
________________________________________________________________________ 
________________________________________________________________________ 
________________________________________________________________________ 
________________________________________________________________________ 
________________________________________________________________________ 
________________________________________________________________________ 
________________________________________________________________________ 
________________________________________________________________________ 
________________________________________________________________________ 
________________________________________________________________________ 
________________________________________________________________________ 
________________________________________________________________________ 
________________________________________________________________________ 
________________________________________________________________________ 
________________________________________________________________________ 
________________________________________________________________________ 
________________________________________________________________________ 
________________________________________________________________________ 
________________________________________________________________________ 
________________________________________________________________________ 
________________________________________________________________________ 
________________________________________________________________________ 
________________________________________________________________________ 
________________________________________________________________________ 
________________________________________________________________________ 
________________________________________________________________________ 
________________________________________________________________________ 
________________________________________________________________________ 
________________________________________________________________________ 
________________________________________________________________________ 
________________________________________________________________________ 
________________________________________________________________________ 
________________________________________________________________________ 
________________________________________________________________________ 
________________________________________________________________________ 
________________________________________________________________________ 
 
Thank you for your participation. 
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APPENDIX C. EVALUATION SLIDES 

 
Figure 33.  Evaluation Slide B 
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Figure 34.  Evaluation Slide D 
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Figure 35.  Evaluation Slide F 
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Figure 36.  Evaluation Slide G 
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Figure 37.  Evaluation Slide I 
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Figure 38.  Evaluation Slide K 

 
 



129

 
 

 
Figure 39.  Evaluation Slide M 
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Figure 40.  Evaluation Slide N 
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Figure 41.  Evaluation Slide P 
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Figure 42.  Evaluation Slide Q 
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Figure 43.  Evaluation Slide R 
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Figure 44.  Evaluation Slide T 
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Figure 45.  Evaluation Slide U 

 
 



136

 
 

 
Figure 46.  Evaluation Slide W 
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Figure 47.  Evaluation Slide Y 
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APPENDIX D. SUBJECT FLIGHT DATA 

 

 

Figure 48.  Navigation Performance of Subject 1  
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Figure 49.  Navigation Performance of Subject 2 
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Figure 50.  Navigation Performance of Subject 3 
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Figure 51.  Navigation Performance of Subject 4 
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Figure 52.  Navigation Performance of Subject 5 
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Figure 53.  Navigation Performance of Subject 6 
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Figure 54.  Navigation Performance of Subject 7 
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Figure 55.  Navigation Performance of Subject 8 
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Figure 56.  Navigation Performance of Subject 9 
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Figure 57.  Navigation Performance of Subject 10 
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Figure 58.  Navigation Performance of Subject 11 
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Figure 59.  Navigation Performance of Subject 12 
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APPENDIX E. HARDWARE SPECIFICATIONS (ADAPTED FROM 
LENNERTON, 2002) 

A. V8 Head Mounted Display from Virtual Research Systems 
Display • Dual 1.3” diagonal Active Matrix Liquid Crystal Displays  

• Resolution per eye: ((640x3)x480), (921,600 color elements) 
equivalent to 307,200 triads  

• Contrast ratio: 200:1  
Optical  • Field of view: 60° diagonal  

• Multi-element glass, fully color corrected design  
• Interpupillary distance (IPD) range: 52mm to 74mm  
• Eye relief: Adjustable 10-30mm design accommodates glasses  
• Rubber eye cups prevent eyeglasses and lens contact  
• Overlap: Standard 100%  

Audio  • Sennheiser HD25 high performance headphones  
• Headphones rotate above headband and snap off when not in 

use   
Mechanical • Single rear ratchet allows for quick, precise fit  

• IPD assembly moves fore/aft to accommodate glasses  
• IPD knobs accessible at sides of shell  
• HMD overall length/width/height: 17.5” x 8” x 6”  (43 x 20 x 15 

cm)  
• HMD Weight: 34 ounces (1.0 kg)   

Cable  • Description: Custom molded cable  
• Length 13’ (3.9m) standard  
• Connector: 50 pin SCSI  

Control 
Box 

• VGA (640 x 480 60Hz) input format  
• Sync on green, separate H and V, or Composite (+ or - going)  
• Overall brightness and contrast  
• Stereo or mono input auto detected  
• Mono input drives right and left eye with one signal  
• Audio Input: 3.5mm mini stereo phone jack  
• Monitor Output: VGA (640 x 480 60Hz)   

Electrical  • Power supply: Universal input (+5, +24, -12, VDC) output  
• Power consumption: 30W  

 

B. GP-US542 3-CCD High Performance Micro Head Color Camera with DSP 
from Panasonic 

TV System  NTSC (Available in PAL)  
Pick-up 

System  Micro prism system  

Pick-up 
Device  

768 (H) x 494(V)
Three 1/3" interline transfer (IT) supper high sensitivity CCDs  

Scanning 
System  

2:1 Interlace
525 lines, 60 fields, 30 frames
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Horizontal: 15.734kHz, Vertical: 59.94Hz  
Synchronizing 

System  Internal or External (Gen-Lock)  

•  Internal  NTSC standard (Available in PAL as GP-US532E***)  
•  External 

(Gen-Lock) Input  
VBS, VS, HD/VD

SC Phase for Gen-Lock (VBS): Free adjustable over 360
H Phase for Gen-Lock (VS): Adjustable  

Video Outputs  
•  Video 1,2  1.0V [p-p] / 75 ohms NTSC composite video signal, 

BNC Connector  
•  S-VIDEO 

(Y/C) Out  
(Y) 0.714V [p-p] / 75 ohms (C) 0.286V [p-p] / 75 ohms, 

S-VIDEO Connector x 1  
•  RGB/SYNC  (R/G/B) 0.7V [p-p] each / 750 (SYNC) 4V [p-p] / 75 

ohms or 0.3V [p-p] 1750 selectable, D-SUB 9-pin Connector x 1 
Required 

Illumination  2000 lx at F8.0 3200K  

Minimum 
Illumination  

9 Ix (0.9 foot candle) at F2.2 with +18db gain, 30 IRE 
level  

Signal-to-
Noise Ratio  62dB (Typical, Luminance) without aperture and gamma 

Horizontal 
Resolution  750 lines at center (Y signal)  

White Balance ATW (Automatic Tracing White Balance Control),
AWO (Automatic White Balance Control) and Manual  

Black Balance  ABC (Automatic Black Balance Control) and Manual  
Color Bar  SMPTE color bar with 7.5% set-up  
Electronic 

Shutter  
ELC (Electrical Light Control) and Manual

STEP: Selectable 1/60 (OFF), 11100, 1/250,1/500, 1/1000, 
1/2000, 1/4000, and 1/10,000 sec SYNCHRO SCAN: Selectable 
from 1/525 to 254/525 line  

Gain 
Selection  AGC, Manual Gain (0, +9, +18db Selectable)  

Switches  Power On/Off (POWER), Camera/Color Bar Selection 
(CAM/BAR), Gain UP Selection (OFF/LOW/HIGH (0/+9/+18dB), 
White Balance Selection (ATW/AWC/MANU), ELC (Electronic 
Light Control) On/Off, PAGE, ITEM (AWC) <(ABC) and> Scene 
1/2  

Controls  R Gain, B Gain and ELC LEVEL  
Computer 

Interface  RS-232C Control, D-SUB 9-pin Connector x 1  

Lens Mount  C Mount  
Power Source  12V DC  
Power 

Consumption  8.4 W  

Ambient 
Operating 
Temperature  

32F - 113F (0C - 45C)  
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Ambient 
Operating Humidity  30%-90%  

Dimensions   
•  Camera 

Head (Excluding 
Mounting Adapter)  

34 (W) x 44 (H) x 52 (D) mm
[1-5/16" (W) x 1-11/16" (H) x 2" (D)]  

•  CCU 
(Excluding Rubber 
Foot and connector)  

206.5 (W) x 44 (H) x 250 (D) mm
[8-1/8" (W) x 1-11/16" (H) x 9-1/2" (D)]  

Weights 
•  Camera 

Head:  
•  CCU:  

 
110g (0.24 lbs)
1.7kg (3.74 lbs)  

 

C. Lenses 
1. TV 1,5/4 C From Doctor® 

 
 

Type Manual 
Lockable 

Format 
Sizes  

Up to 
1/3-inch

Mount 
Type  C  

Focal 
Length  

f = 
4.2mm 

Max. Rel. 
Aperture 

Kmax = 
1.5 

Image 
Diameter 

2Y’ = 
6mm 

Angle of 
View 2σ = 72 

Number of 
Elements 7 

Number of 
Groups 7 

Back Focal 
Length 

s’F’ = 
13.5mm 

Front 
Focal Length 

sF = 
15.1mm 

Cumulative 
Lens Thickness 

Σd = 
45.6mm 

Pupil 
Distances 

SEP = 
15.7mm 

S’AP = -
15.7mm 

Pupil 
Diameters 

∅EP = 
2.76mm 

∅AP = 
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19.47mm 
Mount C 

CS with 
adapter 

Mounting 
Depth 4.2mm 

Focus 
Range 

e = 
0.15m…∞ 

Unit 
Weight 

.77 / 
90g 

 

2. 12VA6-13 ½-inch Format Varifocal Lens from Pelco 
 

Type Varifocal
Format 

Sizes  
1/2-inch 
1/3-inch 

Mount 
Type  C  

Focal 
Length  6-13mm 

Zoom 
Ratio 2.2X 

Relative 
Aperture (F) 

1.8-
Close 

Operation  

• Iris Manual 

• Focus Manual 

• Zoom Manual 
Angle of 

View  

• Diagonal 35.5-
75.5 

• Horizontal 28.5-
60.3 

• Vertical 21.4-
45.2 

Minimum 
Object Distance 0.3m 

Back 
Focal Length 8.7mm 

Filter Size N/A 
Unit 

Weight 
.20 lb 

(.09 kg) 
 
 
D. IS-300 Motion Tracker from InterSense  (TODO) 
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Maximum 
Angular Rate 1200°/sec 

Angular 
Resolution  0.02° RMS 

Angular 
Accuracy  0.25° RMS  

Maximum 
Linear Velocity  15’/sec  

Translation 
Resolution 0.01” RMS 

Translation 
Accuracy  0.25” RMS 

Prediction 0-50ms 
Number of 

InertiaCube Sensors Up to 4 

Number of 
SoniDisc Beacons Up to 8 

Orientation 
Update Rate Up to 500Hz 

Position 
Update Rate Up to 150Hz 

Interface RS-232C with selectable baud rates to 115,200 
Protocol Compatible with industry-standard protocol (FASTRAK™) 
Max. System 

Configurations 
GEOS PULSAR DUAL FUSION

4 
orientation-

only 
stations 

8  position-only 
stations 

4 6-
DOF stations 

4 6-
DOF stations 

 

Or any combination of Operating Modes that Make use of 4 
InertiaCubes and 8 SoniDiscs 

Power  100-240 VAC, 1.0A, 50-60W 
Fusing 100-120 VAC: T250V, 1.0A 220-240 VAC: T250V, 0.5A 
Operating 

Temperature 0 to 50C      (32F to 122F) 

Storage 
Temperature -20 to 70C      (-4F to 158F) 

 Dimensions Weight Cable  
InertialCube 

orientation sensor  
1.06” x 

1.34” x 1.2” 
2.1 

oz. 
10’ 

extendible to 30’  
SoniDisc 

position sensor 
1.0” x 

1.0” x 0.65” 
0.4 

oz. 
n/a 

 
X-bar 41.4” x 

3.0” x 1.7” 
8.2 

lb. 
20’ 

extendable to 34’*  
ReceiverPod 

(each) 
4.75” x 

3.0” x 1.7” 
0.8 

lb. 
24” 

extendable to 34’*  
Base Unit 

Signal Processor  
16.75” x 

12” x 4” 
8.4 

lb. 
n/a 
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*Total X-bar plus ReceiverPod cable length not recommended to exceed 40’ 
Compatibility The InterSensevIS-600 Mark 2 is compatible with all the 

industry leading software and hardware 
Virtual 

Research 
Superscape Sense8 Meta 

VR 
Division 

Thomson 
T&S 

Softimage Multigen nVision Xtensory 

Kaiser Electro-Optics     
 

 

E. VSC 200D Video Scan Converter from Extron Electronics (VGA to D1) 
Video Input  

• Number / Signal Type 1 VGA, 1 Mac RGBHV, RGBS, and 
RGsB 

• Connectors  VGA 1 15-pin HD female + adapter cable 
Mac   1 15-pin D female 

• Nominal Level(s)  Analog 0.7V p-p  

• Minimum / Maximum 
Level(s)  Analog 0V to 2.0V p-p with no offset 

• Impedance 75 ohms or High Z (switchable) 

• Horizontal Frequency  Autoscan 24 kHz to 811 kHz 

• Vertical Frequency Autoscan 50 Hz to 120 Hz 

• Resolution Range Autoscan 560 x 384 to 1280 x 1024 

• External Sync (Genlock) 0.3V to 1.0V p-p 
Video Processing  

• Encoder 10 bit digital 

• Digital Sampling 24 bit, 8 bits per color; 80 MHz 

• Colors 16.8 million 

• Horizontal Filtering 
 

4 levels 

• Vertical Filtering 5 levels 

• Encoder Filtering 3 levels 
Video Output  

• Number / Type / Format 1 RGBHV / RGBS / RGsB or component video or
1 digital component video (CCIR 6011 / ITU-R 

BT.601)(VSC 200D only), or 
1 S-video, or 
1 NTSC / PAL composite video 

• Connectors 5 BNC female  1 RGBHV / RGBS / RGsB or 
component video 

1 BNC female  1 digital component video --
VSC 200D only 

1 4-pin mini-DIN female S-video 
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1 BNC female  composite video 

• Nominal Level RGBHV / RGBS / RGsB 0.7V p-p 
S-video and composite 1.0V p-p 

Impedance 75 ohms 
Sync  

• Input Type Auto detect RGBHV, RGBS, and RGsB 

• Output Type RGBHV, RGBS, and RGsB (all RGB formats are 
swith selectable) 

• Genlock connectors 1 BNC female  genlock input 
1 BNC female  genlock output (terminate w / 

75 ohms if unsed) 

• Standards NTSC 3.58 and PAL 

• Input Level 1.5V to 5.0V p-p 
• Output Level 5V p-p 
• Input Impedance 75 ohms 
• Output Impedance 75 ohms 
• Polarity Negative 

 

F. ADC-6801 signal Converter From LeiTch (RGB to D1) 
Input  

• Sampling Rate 27MHz Y 13.5MHz Cr/Cb 

• Quantization 10 bits 

• Input Standards SMPTE / EBU, MII, Betacam component or RGB 
at 525 or 625 lines rates 

• 5 BNCs Ext. Sync, Loop Through G/Y, B/B-Y, R/R-Y 
Component Analog 

Input  

• Connector BNC per IEC 169-8 

• Impedance 75 ohms unbalanced 

• Signal Level 1 V 

• Adjustable Gain ±10% 

• Time Adjustment Range ±1.8µs 

• Return Loss >40dB to 5.5 MHz 
Filtering As Per 

CCIR 601 Specifications  

• Frequency Response Y channel ±0.1 dB to 5.5 MHz 
 Cr, Cb Channels ±0.2 dB to 2.75 MHz 

• Signal to Noise Ratio on 
all Channels 

>64 dB RMS, relative to 0.714 V, 10 kHz to 5.5 
MHz 

• Interchannel Crosstalk <-50dB 
• 2T K factor <0.5% 
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• Luminance Non-linearity <1% 
• Gain Alignment <1%, typically better than 0.5% 
• DC Clamping Typically within 1 quantization level on field 

average. 
Output  

• Output Standard 4:2:2, two BNCs as per SMPTE 259 
• Input to Output Delay 3.6µs 

 

G. Ultimatte 400-Delux Composite Video Mixer From the Ultimatte 
Corporation 

Specifications • Conforms to CCIR 601 
• 10-bit or 8-bit SDI inputs and outputs 
• Internal Foreground and Matte processing 4:4:4:4 
• 525 / 625 Auto-selectable 

Video  
• I/O Resolution 4:2:2 

• FG Input 4:2:2 

• BG Input 4:2:2 

• Matte In 4:0:0 

• Digital Reference 4:2:2 

• FG and BG Out 4:2:2 

• Internal FG Processing 
and Matte Generation 4:4:4:4 

• Inputs Serial CCIR 601, BNC 75 

• Outputs Serial CCIR 601, BNC 75 

 

H. SDC-100 Serial Digital to VGA Monitoring Converter From Leitch (D1 to 
VGA) 

Serial Digital Input BNC 75 ohm; 270Mb/s; 259M-C 
Up to 100m automatic cable equalization 

Input Return Loss 13.9 dB at 270 MHz 
VGA Monitor Output Sub-D 15-pin female connector 
RGB ±3 dB 0.7V, H+V TTL 
Frequency 

Response  

• Luminance  ±0.5 dB from DC to 5.25 MHz 
±3 dB up to 10 MHz 

• Chrominance ±3 dB up to 4 MHz 

• Gamma Correction Automatic 

• Standards 525-line and 625-line auto switching 
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• Signal-to-Noise -64 dB 
625 line / 50 Hz 

mode with line doubling  

• Horizontal Frequency 31.25 kHz 

• Vertical Frequency 50 Hz 
525 line / 60 Hz 

mode with line doubling  

• Horizontal Frequency 31.469 kHz 

• Vertical Frequency 59.94 Hz 

 

I. VE CPU 
Manufacturer / Model Dell / Dimension 8100 
CPU  Intel® Pentium® 4  

1300 MHz 
 

Memory 128 MB RAM 
Operating System  Microsoft Windows 2000 

5.00.2195 
Service Pack 2 

Monitor Set to 640 x 480 for HMD compatibility 
60 Hz 

Power  Industry Standard for U.S. desktop 
computers 

 

J. Instrument Panel  
Manufacturer / Model SGI / Silicon Graphics 320/540  
CPU  X86 Family 6 Model 7 Stepping 2 

SGI-320_ARCx86_mp 
 

Memory 200 MB RAM 
Operating System  Microsoft Windows 2000 

5.00.2195 
Service Pack 2 

Monitor SGI 1600 SW 
60 Hz  

Display Adapter 
Information  

• Graphics Processor GeForce2 MX/MX 400 
• Bus Type  AGP 
• Bios Version 3.11.01.17.20 
• On-Board Memory 32 MB 
• TV Encoder Type Conexant Bt869 

Power  Industry Standard for U.S. desktop 
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computers 

 

K. Top Down View CPU  
Manufacturer / Model Dell / Dimension 8200 
CPU  Intel® Pentium® 4  

2.0 GHz 
 

Memory 256 MB RAM 
Operating System  Microsoft Windows 2000 

5.00.2195 
Service Pack 2 

Monitor Set to 640 x 480 for HMD compatibility 
60 Hz 

Power  Industry Standard for U.S. desktop 
computers 
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