NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

OPERATIONAL LOGISTICS WARGAME
by
Carolyn S. Fricke
December 2001

Thesis Advisor: Arnold H. Buss
Second Reader: Kevin J. Maher

Approved for public release; distribution is unlimited.

i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

December 2001 Master’s Thesis
4. TITLE AND SUBTITLE: Title (Mix case letters) 5. FUNDING NUMBERS
Dperational Logistics Wargame

6. AUTHOR(S) Carolyn S. Fricke

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING
Naval Postgraduate School ORGANIZATION REPORT
Monterey, CA 93943-5000 NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
N/A AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited.

ABSTRACT (maximum 200 words)

This thesis provides an interactive wargame for use by students of Operational Logistics at the
Naval Postgraduate School. The objective of the wargame is to show students how their
decisions regarding resupply of combatant forces affect the ability of those forces to carry-out
their wartime missions. The core programming of the Operational Logistics Wargame, as
presented by this thesis, deals with a Carrier Battle Group and its missions of command of the
sea and power projection ashore. Written in a modular fashion, the wargame can be expanded
in scope at a later date to include other combatant missions and components such as
submarines, amphibious forces, or ground forces. The modular design allows the wargame to
have modifications made to it without alterations to components not directly involved. The
wargame also draws data from an outside database by using Structured Query Language (SQL)
and a Java Database Connectivity - Open Database Connectivity (JDBC-ODBC) Bridge. The
wargame can be installed on most major operation systems. Other major design features of the
wargame are Discrete Event Simulation and extensive use of Graphical User Interfaces (GUIs)
for providing information to the player and obtaining information from the player.

14. SUBJECT TERMS Operational Logistics, Operations Research, Discrete })iggg’[BER OF
Event Simulation, Wargame, Simulation, JDBC, JDBC-ODBC, GUI, 119
Graphical User Interface, Java Swing, Java, 16, PRICE CODE
17. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION
CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF | OF ABSTRACT
REPORT PAGE ABSTRACT

Unclassified Unclassified Unclassified UL

THIS PAGE INTENTIONALLY LEFT BLANK

i

Approved for public release; distribution is unlimited.

OPERATIONAL LOGISTICS WARGAME

Carolyn S. Fricke
Lieutenant Commander, United States Navy
B.S., University of Southwestern Louisiana, 1985

Submitted in partial fulfillment of the
requirements for the degree of
MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL
December 2001

fc{y\ ﬂ

Author:

arol cke

Approved by:

Arnold H. Buss Tﬁ’esxs Advisor

ﬂ Kevin J. Maher, Second Reader

rofesgér James N. Eagle, Chairman
Department of Operations Research

il

THIS PAGE INTENTIONALLY LEFT BLANK

v

ABSTRACT

This thesis provides an interactive wargame for use by students of Operational
Logistics at the Naval Postgraduate School. The objective of the wargame is to show
students how their decisions regarding resupply of combatant forces affect the ability of
those forces to carry-out their wartime missions. The core programming of the
Operational Logistics Wargame, as presented by this thesis, deals with a Carrier Battle
Group and its missions of command of the sea and power projection ashore. Written in a
modular fashion, the wargame can be expanded in scope at a later date to include other
combatant missions and components such as submarines, amphibious forces, or ground
forces. The modular design allows the wargame to have modifications made to it without
alterations to components not directly involved. The wargame also draws data from an
outside database by using Structured Query Language (SQL) and a JDBC - Open
Database Connectivity (JDBC-ODBC) Bridge. The wargame can be installed on most
major operating systems. Other major design features of the wargame are Discrete Event
Simulation and extensive use of Graphical User Interfaces (GUIs) for providing

information to the player and obtaining information from the player.

THIS PAGE INTENTIONALLY LEFT BLANK

vi

DISCLAIMER

The reader is cautioned that computer programs developed in this research may
not have been exercised for all cases of interest. While every effort has been made,
within the time available, to ensure that the programs are free of computational and logic
errors, they cannot be considered validated. Any application of these programs without

additional verification is at the risk of the player.

Vil

THIS PAGE INTENTIONALLY LEFT BLANK

viil

TABLE OF CONTENTS

L INTRODUCGTION ..cccouiiiniiniinsninnnnsssicss 1
II. METHODOLOGY .uuiiiiiiriiininnniissninsnnsssessssnsssnssssssssessassss 5
A. MODELING AND JAVA PROGRAMMINGuucevveinsuieseissnnesnnsssecsasssnnes 5
B. DATABASE DEVELOPMENTcccceviiensurcsssarcssaresnes 7
1. CVBG Databaseccovueriecssnriicsssnnsicsssssssecsssssssssssssssssssssssssssssssssssssssass 7

2. Threat Databaseccuieevveeecirnrinssnncsssencsserssssnsssssssssssssssssssssssssssssssses 14

C. METHODOLOGY SUMMARYuuiiiiiniiinnnnsninsssisssncsssssssecsssssssssssssssssesass 15
L PLAYER MANUAL ...cocoviiiintiininnicsssncssssnssses 17
A. OPERATIONAL LOGISTICS WARGAME SUMMARYccceeueeueee 18
1. OFfENISE cecenreinrirninstensnnnsnenseensnecsessssessnssssesssessssesssessssssssassssesssassssesss 18

2. Enemy Detectionccueiceecveriecissniicssssnnncssssnnsscsssssssesssssssssssssssssssnns 18

3. DEfENSE cuueeeeeineinrecrneiseentenstecsnesseesneesneessessaesssessssssssssssssssasssssssaens 18

4 LOGISTICS cecvvnrrrecscsnnnncssssnnnecsssnnrnesssssssessssnssns 19

a. LOGISTICS TtOMIS..nnnanennnaeennnrinsnneinsnrissnnssssnssssnsssssssssssnssnssones 19

b. LOGISTICS URILS aueeeueeiossarisssaresssanesssssessasssssasssssassssssssssssssssssssses 19

c Replenishment REQUESTSueeeeeueeevseeessnrssseresserssssenosssssoses 20

d. POTE ViSTES auveveeesevnniosssssnrisssess 20

B. GAME PLAY START-UP ..uucccuiiiicnnincniissnnicsssncssssicssssicssssssssssssssssssssssssses 21
1. L 01 21 | 10 (1) N 21

2. L L1V LN ET UV 10 11) | DN 21

C. WELCOME SCREEN 21
D. PLEASE WAIT PANEL 22
E. INTELLIGENCE SUMMARY ...ccuiiiniiiiineinsnecnenssseisssnsssessssssssssssssssssesses 22
1. Intelligence SuMMArY Tabcccueiiiveiiisiinisninssncsssnncssnncssnsnessnseenes 23

2. Game Rules Tab....coiiiiiiinniinnisnnicnsssnnicssssnnnccsssssncsssssssssssssssssssnes 24

3. Battle Group Summary Tabiiciviicisninssnncsssnncsssncssssncssssnenes 24

4. Current Logistics Status Tab........cccovvveiicciisniccsisnrrccsssnnreccssnssecsnes 25

5. Current Weapons Status Tabceeicvveiiivninssncsssnncssencssencssnnnenes 26

6. PreSail DeCISIONS ...ccocveereeiicsnniecsssnnicssssnseccssssssscsssssssessssssssssssssssssssses 27

F. SETTING COURSE AND SPEED.......ccccuviiinnrissrncssnncssnnicsssncsssscssssncsssses 28
1. Course and SPeed........eeeececcveriicsisnnicssssnrecsssssssecsssssssesssssssssssssssssssssss 28

2. Course and Speeds for the CVBG (by group)....ccccceeeeuercrcnercscnnnenes 29

3. Course and Speeds for Individual Ships.......ccceevveriecicrnnricsccnnrccsanns 31

G. ANIMATION 33
1. ANIMALION TAD cocuueriiiiririininniiiniinniicnssnnicssssnnnicssssssnesssssssssssssssssssnns 33

2. ACtIONS TaD.ccuuiiiiiniiniiiinnnentinnenneecnessniesnesseesseessesssssssassssessns 34

a. Reason For Auto-Pause PANEluueeeeeeeneeeeossvnnvsoosssannnees 34

b. NY T o N 34

c. NY 1T b TN o7 34

d. Game Summary Log PARel.............uuueeoeneevoneeonsnnrcssarosenenenes 35

e. NY2 LT 00 Vi 1 100 1R a7) 35

f L6V Y N 1171 K o] N 36

1X

g Logistics StAtUS PANELuueeeeeeunevvovssnereosssnnicosssanssosssssseses 37

h. Weapons Status PANEL.............eeeeoueeeeonveecsurssssnnosserosensrosssenes 37

3. Control Panel........cccoueeiicnisnnicinsnnnicssssnnnicssssnsnssssssssncssssssesssssssssssanes 38

H. PANELS SPAWNED BY SELECT ACTIONS PANEL.......cccccevvercrcnencnns 39
1. Fire Weapons Panel.........iiiiieiiicnisnnicnssnnnccsssnnecssssnssscssssssssssnns 39

2. Unrep Orders Panel.........eiienveicnseicssnncssnnccsssncssssncsssncssssncssssecses 42

a. PlACE AN OFAEF cauuaanenaanaerevsnnerioosssanssossssssressssssssssssssssssssssssasss 43

b. The Unrep SCHedule.......unnaoeeneeonnenosaensssnnessssnssssssssssrosnes 45

c. CRECKk AN OFAEF ..uuuaunnnaeeonnavensnarinsarisssaressssosssesssssssossssssssssssses 46

3. Change Coordinates Panelscceeevvvercvcercnsnicscnrcssnnncssnencssnenenes 47

4. Add Coordinates Panel...........ccooveiiccisvnnrccsisnnncssssnnrecssssssscssssnssessnns 50

5. Save and EXit.....ciiiiiiiiiinninnninninnnennieieniisiseesessesssses 50

I. OTHER TOPICS .cuuiiiitintiinnenssenssesssesssicssssssssssssssssssssssssssssssssssssssess 50
1. Bonus and Penalty Points.........coeiieveicivnicssninssnncsssnncscnncssnnncssssecnes 50

2. Surface Threats and Air Threats.........ccccvceeccccvnrccsssnrrccsssnnnecsssnnnes 51

3. Scheduling Port Visits and Underway Replenishments.................. 52

IV. REFEREE MANUAL ...coooiiniiitiisticsniisnisssissssicssessssssssesssssesssssssssssssssssssssssssssssssssssessass 53
A. DATABASE CONTROL 53
B. JAVA CODE CONTROLuuiiiririirrcniisensninsinsssncsssnssseesssssssssssssssssesaes 53
1. Maps, Bases, and Coordinate SyStemc..ccceeveeecrcercscercscnercscnsncnes 53

2. Penalty and Bonus POINtS.......cocueiieeiivneiicnisnnniccsssnnressssnnseccsssnssscsnes 54

3. Random Variablescieiiiiiieeisecnsnecsenssnnnsecssnecsessssesssecsssecsene 54

4. Other Variables.....ceiiciinnniicsissnnicssssnnicsssssssscsssssssessssssssssssssssssssns 55

C. MISCELLANEQOUS CONTROLccoiiiirnsnensnnnnensnissaessseesssecssessssesssesnn 55
V. CONCLUSIONS AND RECOMMENDATIONS.....coiiiiuiinninsnenseicssesssssssessssnssanes 57
A. ADVANTAGEStirinntentinnenneensisssnesssesssessessssessssssssssssasssssssssssssesss 57
1. FIEXIDIE o...cuueiienrrinisnninssnninsnnesssnnsssnsssssnncssasssssasssssnssssssssssssssssssssssnsssses 57

2. MOAEI M ...ccecneriicsssnnricsssssssesssssnssesssssssssssssssssssssssssssssssssasssssassssssssssssssses 57

3. USer-Friendly.....cccoiceeveicscseicssnicssnnncssanncssanssssasssssnssssssssssssssssssssssnsssses 57

4. L0 11176 SQES] 21 3 () RN 58

5. L 1) o 1 1) (RN 58

B. RECOMMENDED ENHANCEMENTSuiiniininniinsnnnsnecsssncssnssssnssssesans 58
1. State Variable StatistiCS......ccceevercrrrisssnisssnnisssnrcssssrssseresssassssssssssnns 58

2. Logistics and Weapons Inventory StatiSticS......coccvevuerseessuecsanecnnees 58

3. Other Game Play StatiSticsccccceerevercssrnrcssnrcssnrcssnercssssscssssscsnssoses 58

4. Coo0Kie CUtter SENSOI'S ...uuiicvrerecrsericssrnisssseesssnesssnessssnesssssssssssessssaeses 59

5. Enhancing RealiSmccooeierveicivnncssnncssanncssnncsssnncssnnessssnssssssssnsscses 59

6. Hardwired Datacceeeecnivnriccnssnnncccssnncccssssnsscsses 59

a. INStAnce Variableseueeeoeueeeoueressverosserosserosssessssssssssassoses 59

b. Friendly and ENemy BaASES.........coeeeeeseeeiseeesssresssnessnsnesnes 60

c. Threat Air and Threat Surface MOVEMENL.........eeeeeererererosenes 60

C. CONCLUSION 60
APPENDIX A . THE OPLOG PACKAGEuiourivrrrinrerissnnicsssnicssansssssssssssssssssssssssssssns 61
1. OPLOG.DATABASE CLASSEScooiiiiiinninniissninssessssiesssesssssssssssssesses 61

X

a. DataBaseInfo.java.........ccovveiiciiinniicnisnnnicssssnnnicsssssncsssssssesssssssssssnns 61
b. DataRepository.JaVaccueieicveicisercssnncssanicsssnecsssnesssseessssnssssssesnsssses 61
c. LOGRALES.JAVA c.cuuureriiiisnnricsisnriccsssnnsicsssssssssssssssssssssssessssssssssssssssssssns 62
d. ThreatDataGetter.Javaceeeccceecccsercsssercssnncsssressssressssncssssscsssseses 62
e. WeaponsData.javaicccericciinniicnsssnnncsssssnecssssssnessssssssssssssssssssns 62
OPLOG.GRAPHICS CLASSEScooinrrnninrnensnensnensncsssenssscssesssassssessaes 63
a. ANIMALE.JAVA..ccerivrriiisssnricsssssrresss 63
b. ControlPanel.javaceiicvveiiciveniiisnninssnnisssnncssssnessssnesssnesssssessssseses 63
c. PiNGEr.JaAVA..ccccincniiiinireriinsisnnnicsssnniisssssnncsssssssssssssssssssssssssssssssssssssasns 63
d. SiIMTImePanel.javacceiieivriiisricssnnicssninssnnissssnessssnessssesssssesanns 64
OPLOG.GUI CLASSESooititinttnntinnnnsssecssnissssssssssssisssssssssssssssssssssens 64
a. PLN 02 QS (1) 11 L T 64
b. CaSGroupSetter.JaVa ..ccccvccerecssssanrecssssssnesssssssssssssssssssssssssssssssssssssasss 64
c. CASLISteNEr.JAVA .ccccueiiervericssnrissssncssssncsssnssssssosssssosssssossssssssssssssssssses 65
d. LOF T B 1 1UA T 1 1) o T 2 N 65
e. CourseAndSPeed.JaVAcccceeicrverccsssncsssrcsssicssssnessssncsssssssssssssssssses 65
f. FireResultsPanel javaiiiinivniicnsssnnccsssnnncssssnnnecsssnssscsssssssssens 65
g. FireWeaponsPaneljava........ceiinviicivnicssnninssnncsssncssnsncssssncsssesens 65
h. INtelSUMMATNY.JAVA .cuueeiiiiiirnriccissnricssssnsnssssssssscsssssssesssssssssssssssssssssns 66
i. LogProgressBar.javaeieiceicnsnicnsnicssnncsssnncssssncssssncssssscsssssses 66
je MoreCasGroupSetter.Java ... eeeecccsssrcssssssecsssssssesssssssssssssssssssasns 66
k. MoreCasUnitSetter.Java.. .. ceeccnsseecssnecsssnesssssssssnessssnssssssesssesses 66
L. MoreCourseAndSpPeed.Javaceeeiecccsnrecssssnnresssssssessssssssssssssssssses 67
m. MoreCourseAndSpeedUnits.javacceeecsserecssnrccssncsssncssssrcssnsneses 67
n. OPplogWeElCOME.JAVA ..cueereercnniicnssnnricssssnnrecsssssssssssssssnsssssssssssssssssssanns 67
0. PleaseWaitPanel.java.........ccueieiveicivnicssencssnnsssnnisssnncsssncssssncssssecses 67
p- SelectActionSLiStener.javaecceecccserccssnncsssnrcssserssssensssssssssssssssnns 68
q. SelectActionsPanel.java......eoeeeneennennsnensecnsnensennsnensecssseeseesaees 68
r. SHAETLISTENET «.ucceueiiueirniisniisnensnenseenssnssssecssessssecssnssssesssassssesssssssasens 68
S. SWINZWOIKeEr.JAVA cuuccceeeneenrininensennsnensnessnessnnssaessncsssessssesssssssncens 68
t. TheLogPanel.javacoeieviveicniercnssnncssnicssnisssnnssssssscsssssssssssssssssses 68
OPLOG.LOG CLASSESuuiiiirininnninsnisssissssssssisssssssssossssssssssssssssssssses 69
a. CheckUnrepSchedule.javaueiceeicnceicssencssnnicsssnicssnsscsssssssssssses 69
b. CLEFPanel.java.....eoeenneennennnensennsnnnsnensncsssesssssssssssnssssesssssssasses 69
c. CLEFStatUS.JAVA...uuueiiirrinssaresssanesssanssssssesssssssssssssssssssssssssssssssssssssnsssses 69
d. DeleteUnrepRequest.java........cceeeccseecssneecssnnecssnnccssecsssncssssncssseenes 70
e. LogStatus.JAVa....cuueieireicssnicssnnesssnnssssnnssssssssssssssssssssssssssssssssssssssnsssses 70
f. OrderLiStener.Java ...eeeeeieecneensnenssesnssensnesssesssssssssssnssssessssssssesss 70
g. PlacedRASRequestsPanel.java.........cccceeccnverccssnncssnncssnncssnescssnenenes 70
h. SCOrePanel.javaeeeeeneenniennnennneniennnennnecnnennenssessessssssesssens 70
i. ShipRASRequestsPanel.javaceeceveecccvencnsnicssnncssnnicsssnscsnssssnnns 70
B ShowOrderPanel.java......ceeeenneennennnensnensnnnsnenseessecsssecssessncns 71
k. UnrepScheduler.javaceiciveicssnicssnnsssnncsssnnssssnsssssssssssssssssssses 71
L. UnrepSummaryPanel.Javaeeniennennnnnsnensnncsnenssncsssensnecnens 71
m. WeaponsStatus.java 71

xi

5. OPLOG.SMD CLASSES ...cuiiriintinntinsnnnnsicssnssscssssssssssssssssssssssssssssssess 72
a. AIrBGLJaVAaaaiiiiiiiiiiiininiossnicssnissssnisssssisssssssssssesssssosssssssssssssssssssssssss 72
b. AGrTRreat. JaVAa .. iccniceiicnissnniecssssnnicssssnssscsssssssesssssssesssssssssssssssssssssns 72
c. AirThreatCourseGenerator.java.......ceeecccssecssssecssssessssrsssssscsssnes 72
d. AIrThreatGenerator.Java.......eeeeccccsnsccsssnsscsssssssesssssssssssssssssssssns 72
e. ATTIVAIPIOCeSS. JaAVA...nneiiiiericnnriinsnriissnticssnricsssnisssstessssessssnssssssssnsees 73
f. BattleGroupMoverManager.java......eecccccsssecsssssssesssssssssssssssssssns 73
g. ConstantRateMediator.java..........ceeececeicssencssnicssssicssssecsssssssssesses 73
h. ConstantRAteSeNSOr.JAVAecccercveericcsssnnrecssssnssscssssssnesssssssesssssssssssasns 74
i. (001 110 ¢1) | 13 g - LN 74
je Deployment. java......cceeeiecnscsnriecsssnrncssssssnsssssssssssssssssesssssssssssssssssssasns 74
k. EnemyBase.javaiieceiininicisnicnsnicnsnicssnncssssnisssnesssnssssssosssssses 75
L. EnemyBaseGenerator.Javaeecccccnnccssssnnscsssssssesssssssssssssssssssses 75
m. FriendlyBase.Java......ceiiineicnssencnsnicssnncsssnicssssssssssesssssssssssosssscses 75
n. FriendlyBaseGenerator.java........cceeeiccnssnnccsssssnnesssssssscssssssssssnns 76
0. GenRandomDBTAargets.java.........ceeeccceecscsnncssnicssnsncssssncssssscsssecses 76
p- OPIOZMOVET.JAVA .ccurrerrccsssnnricssssansesssssssesss 77
q. PathMoverManager.javacceeecccseecssencssnsecssssesssssessssesssssessssssses 77
r. SRIP.JAVA cevriiiiinniiininnricsissniicssssnsiessssssssesssssssesssssssssssssssssssssssssssssssasss 77
S. SurfaceThreat.Javaeeiciceicssninssnnicssnnesssnnisssssssssnesssssessssnssanns 77
t. SurfaceThreatCourseGenerator.Javacccccceeccssssnerecssssssecsssnnnes 78
6. OPLOG.UTIL CLASSES ..cootirtinnenseensnensnessseesssesssessassssessssssssssssassssesssase 78
a. MoVerHashMap.javacceeiiccicsnnicsssnsncsssssssscssssssesssssssssssssssssssases 78
b. ShipHashMap.javaiicnviicnsninssninsssncssssncsssnsssssssssssssssssssssnns 78
APPENDIX B. RECOMMENDED ENHANCEMENTS.ccoviiinvininsnensnnssannsnecsssncsaenes 79
1. PLAYABILITY AND FUNCTIONALITY ENHANCEMENTS.............. 79
a. Save and ReSUMC.......uuuiiieiineiisnenssenisninseensnecssnecssnssseesssesssesssssssssns 79
b. Course and Speed Visual Aids......cccceeerveeecceeccnnes 79
c. Identification of MOVErSccoeirveisecnsnecsunissnensnecsssecsnsssansssecssecsnns 80
d. Manual Deletion Of Underway Replenishment Requests.............. 80
e. Underway Replenishment Rendezvous...........coeeevveeicssnrcssnrcscnenenes 80
2. IMPROVING COMPUTER RESOURCE USAGE AND
ROBUSTNESS cucicttitiitinnticninnninsecssicsssssssesssssssseesssssssssssessssssssassssssssasnss 80
a. JDBC INterface.......ccceeecierccieicssnrcssnicsssnecsssnccsssnesssseessssessssssesssseeses 80
b. Logical Class StruCtUreccouiecrsercsssnrcssnnssssnssssssessssssssssssssssssssssses 81
c. Reduce Game Delayseeieeneennneensneessnecsenssnensecsssessnssssssssnesssessanes 81
3. INCREASING REALISM AND COMPLEXITY ...ccivveisennsnecsunnsnccsencnns 81
a. Scenario Developmenteceeeeecceiiiisnricssnncnssnnisssnncssencssssncssssncsanes 81
b. Friendly Air ASSEtS ..c.ccccceveecssercsssnncsssnncssanssssssssssssssssssssssssssssssssssssses 82
c. F44 ConsSumptionccceeeecieicisnecssnncssnncsssnecsssessssssessssesssssesssseses 82
d. Link Inventory Levels and Ship Capabilities......ccccceeeuvrercuercscnnrenns 82
e. WeEaPONS USC...cccuueieiiissnercisssnnrncsssneeccsssssescsssssensssssssenssssssssscsssssassssses 83
f. Weapons INVENLOTY ...c..ciciveicisnicssanecssnnesssnsssssssssssssssssssssssssssssssssssess 83
g. Multiple Combat Logistics Force Ships........ccoeceevvuecsencncssueesnecnnees 84
h. Additional Combatant and Combat Typesc..ccceeeuvrercnercssnnccssancens 84

Xii

i. SIMUIATION tIIMES..uerrereeerrereeerrerercereeeescesessessssssssssssssssssssessssssssssssosssse 84

i Land versus Water........cueiiineicnsnncssnicssanicssnnesssssessssosssssssssssossssssses 84
k. Refine Stores and Weapons RAS.........iiinvvniiiciisnnreccssnnicssssnnsecssnns 84
LIST OF REFERENCEScouuiiiiiiniinninnninnennticssiisaessesssesssssscsssessssessssssssssssassssesssass 87
137037 0 10 141 272N 5 1 T 89
INITIAL DISTRIBUTION LIST ..cuuooniiiniinniinsnensenssnessesssaesssessssesssnssssssssesssassssssssassssesssases 91

xiil

THIS PAGE INTENTIONALLY LEFT BLANK

X1V

LIST OF FIGURES

Figure 1. Wargame Programming FIOWc.cccciiiiiiiiiiiiiiiniiiccecee e 6
Figure 2. Courtesy of Professor D. A. Schradycccoooviiieiiiiiiiieeiceeceeee e 17
Figure 3. Operational Logistics Wargame Panelccccocceiiieiiiiinieniiiiieeeeeeeee e 22
Figure 4. Please Wait Panelc.coooviiiiiiiiiiie ettt 22
Figure 5. Intelligence SUmMmary Tabccoooiiiiiiiiiiiiiiiiecee e 23
Figure 6. Game RUles Tabccoouiiiiiiiiiie ettt eeae e 24
Figure 7. Battle Group Summary Tab..........cccccoeviiiiiiiiiiiieieee e 25
Figure 8. Current Logistics Status Tabccccveiiiiiiiiiiiiiccieceeeeeee e 26
Figure 9. Current Weapons Status Tabccooviieiiiiiiiiiiniieieeieeee e 27
Figure 10. PreSail DeciSIons Tab........c.cccciiiiiiiiiiiieciieecieeeiee ettt esaaeeeaaee e 28
Figure 11. Course and Speed Panelcccoovieiiiiiiiiniiiiiieicceeeee e 29
Figure 12. Course and Speeds for the CVBG (by group) Panel. After Ref. National
GROZIAPIIC. ..ttt ettt st e et e s be e s e ebeesseeenseenns 30
Figure 13. Sample CAS Group OULPUL........ccovieeiiieeiieeeiie et eeieeeeee et e svee e e saeeesaaeeeas 30
Figure 14. Course and Speeds for individual ships Panel. After Ref. National
GROGITAPIIC. .eeevieeiie ettt ettt et e e et e e st e e e saeeessbeeessseeesaseeensseeenns 32
Figure 15. Sample Individual Ship CAS OULPULc.eeeviiiiiiiiiieiieeeeeee e 32
Figure 16. Animation Tab. After Ref. National Geographic.ccceeveuiieriiieeniiieeniieeieens 33
Figure 17. Actions Tab, VIEW L....cccooiiiiiiiiiiiiieieeieee ettt et 35
Figure 18. Actions Tab, VIEW 2.......cccouiiiiiiiiiie ettt eee et e e e esaveesaaeeens 36
Figure 19. Actions Tab, VIEW 3......ccoiiiiiiiiiiieie ettt ettt 37
Figure 20. Actions Tab, VIEW 4........cccuiioiiiiiiiieciie ettt svee s e e saveesnaeeen 38
Figure 21. Fire Weapons Panel...........ccccooviiiiiiiiiiiiiiiccececeeee e 40
Figure 22. BDA Report: Lucky Shot......cooioiiiiiiieceeeeeeeeee e e 41
Figure 23. BDA Report: DeStruCtiONc.ceviieiiieiieriieeieerie ettt et 41
Figure 24. BDA Report: Damagecceoveieiiiieiiieeiieeeiieeeieeeee et e e e e ens 41
Figure 25. BDA Report: Undamagedcocerieviriiniiiiiienienieeentesieete st 41
Figure 26. BDA Report: Weapon Out of Range Penalty..........ccccoovviiiiiiiiiniiiiniiiieeeee 42
Figure 27. BDA Report: Zero Inventory Penalty..........coccoeiiiiiiiiiiniiiieceee e, 42
Figure 28. Unrep Orders Paneloccuiiiiiiiiiiiiciecieceeeeee e 43
Figure 29. Placing an UNREP request Panel............cccooiiiiniiiiniiniiniicececicecnens 44
Figure 30. Sample Selected Order, Scheduled............cccooviieiiiiiiienieiiieeceeeee e, 46
Figure 31. Sample Selected Order, Unscheduledcocoeoiiiiiiiiiiniininiiiniceecneceee 46
Figure 32. Change Coordinates Course and Speed Panel.............ccccoeevveviieniiiiieniicieeeeee, 47
Figure 33. Change CoordinatesGroup Course and Speeds Panel. After Ref. National
GROZIAPNIC. ..ttt ettt et et aeebeessbeeseeenseeseeenseenes 48
Figure 34. Change Coordinates Course and Speed Unit Selection Panel.............cccccceeiene. 49
Figure 35. Change Coordinates Unit Course and Speed Panel. After Ref. National
GEOZIAPNIC. ...ttt 49

XV

THIS PAGE INTENTIONALLY LEFT BLANK

XVi

LIST OF TABLES

Table 1. CVBG TabIE ..c..covuiiiiiiiiieieeee ettt sttt 8
Table 2. TypeData Table........c.ccooiiieiiieeiicceece et ree e st e e aeeesaaeas 9
Table 3. TypeSensors TabIe.........ccoociiiiiiiiiiiee et 10
Table 4. Sensors Table.......c.oiiiiiiii e et e 10
Table 5. TypeWeapons Table, partial data onlycccceeveiiriiiiiiieniieniieccee e, 12
Table 6. Weapons TabIec..oeeiiieiiiiciieceeee e s e 12
Table 7. General Planning FaCtOrs........c.ccocueeiiiiiiiiiiieiiiciiesie et 13
Table 8. TypeLogistics Table, partial data Onlycccccceveeiiiiiiiieiee e 13
Table 9. CLFcapacity TabIe........cccoeiiiiiiiiiiieiieeie ettt 14
Table 10. Threat Ships TabIecoooiuiiiiiiiieeiieee e e e e e 14
Table 11. Oplog Weapon RANGESc.ccoieeiieriieiiieiieeiteriie ettt ettt e saeesee e s 40
Table 12. Bonus and Penalty Point Values...........cccocvieiiiiiiiiiicieeeceeeee e 51

xvil

THIS PAGE INTENTIONALLY LEFT BLANK

xviil

LIST OF SYMBOLS, ACRONYMS AND/OR ABBREVIATIONS

BDA
CIWS

CLF
CVBG
DSN

FIFO

GPF

GUI

IDE

JDBC
JDBC-ODBC
ODBC
Oplog
Pro-Log
RAS

SQL
TACLOGS
Unrep

Battle Damage Assessment

Close In Weapons System

Combat Logistics Force

Carrier Battle Group

Data Source Name

First-In, First-Out

General Planning Factors

Graphical User Interface

Integrated Development Environment
Acronym has no meaning, JDBC is stand-alone phrase
JDBC-Open Database Connectivity
Open Database Connectivity
Operational Logistics

A Fortran-based forerunner of the Operational Logistics Wargame

Replenishment at Sea

Structured Query Language
Tactical Logistics Support System
Underway Replenishment

X1X

THIS PAGE INTENTIONALLY LEFT BLANK

XX

EXECUTIVE SUMMARY

Military personnel at all levels play wargames to ‘experience the realities of
decision making.’ (Perla, 302) Students of Operational Logistics at the Naval
Postgraduate School play wargames for the same reason. A major issue in the
development of a military wargame is the balance between realism and playability.
Another issue is whether a particular game meets the training needs of specific users.
Since a single wargame is not capable of being realistic and playable while still meeting
the needs of all possible users, wargames are often developed to meet the needs of a
specific group of end users. Operational Logistics students are one such specific group of
end users. While there are a multitude of modern wargames and combat simulations, the
vast majority do not include logistics in the game play. The few models that do include a
logistics component (such as JWARS) require users to have a considerable amount of
training to obtain a basic working knowledge of the game’s operation. They also have an
extremely detailed level of resolution and place the main emphasis on combat rather than
logistics. Thus, these existing models are not suitable for basic Operational Logistics
training.

Students of Operational Logistics at the Naval Postgraduate School take a
required course on the fundamentals of the Naval Logistics system. Part of the course is
spent using interactive computer simulations as training aids to better understand the
material being taught. A forerunner of the Operational Logistics Wargame, called PRO-
LOG, was developed in the 1980°s by NPS students and instructors to acquaint
Operational Logistics students with logistical concepts. PRO-LOG is a deterministic
combat model with a single scripted scenario. It has virtually no graphic capabilities and
has user interfaces that are cumbersome and difficult to use. The wargame was written in
Fortran, an archaic language, and would require extensive program code changes to
modify the wargame structure at the most basic level. While PRO-LOG met the needs of
students at the time, advances in modeling combat techniques and computer technology
have made PRO-LOG obsolete; however, the reasons for PRO-LOG’s development still
exist: logisticians, like warfighters, enhance their wartime capabilities by practicing with

true-to-life simulations. Although many basic combat models available today seem

XX1

similar to this simulation, the similarity is on the surface only and extends only to the
combat between the forces. Most basic models do not include logistics in the game play.
Including logistics in a model requires that logistical considerations be incorporated from
the very beginning. Retrofit of an existing combat model to include logistics simply isn’t
viable.

In order to meet the continuing goal of training Logistics Officers to make
effective decisions in a combat situation, the introductory Operational Logistics course
needed a modern replacement for PRO-LOG. To be a worthwhile replacement, the new
wargame needed to be written in modern code using the latest Operations Research
simulation techniques. It needed to be configurable, expandable, and stochastic. User
interfaces needed to be user-friendly. And, the amount of time needed to train players
needed to be equitable with the length of time that the Operational Logistics course
devotes to the wargame. The Operational Logistics Wargame exceeds all qualifications
desired in a replacement for PRO-LOG. It will assist Operational Logistics students in
understanding their roles.

The core programming of the Operational Logistics Wargame, as presented by
this thesis, deals with a Carrier Battle Group and its missions of command of the sea and
power projection ashore. Written in the Java programming language and in a modular
fashion, the wargame can be expanded in scope at a later date to include other combatant
missions and components such as submarines, amphibious forces, or ground forces. The
modular design also allows the wargame to have modifications made to it without
alterations to components not directly involved. Component modifications and additions
can be made in future versions that make the wargame more complex and robust.

The wargame draws data from an outside database using Structured Query
Language (SQL) and a “JDBC” driver. The portability of the Java program language
allows the wargame to be run on most major operating systems. Other major design
features of the wargame are Discrete Event Simulation and extensive use of Graphical
User Interfaces (GUIs) for providing information to the player and obtaining information

from the player.

xxil

The Operational Logistics Wargame is intended as an introduction to Operational
Logistics only. It is a precursor to more complex and challenging wargames encountered

in Joint and Combined Logistics and Logistics Modeling coursework.

xxiii

THIS PAGE INTENTIONALLY LEFT BLANK

XX1V

ACKNOWLEDGMENT

I would like to thank Professor Arnold H. Buss for his outstanding guidance and
his belief in my programming skills. I also wish to thank Professor David A. Schrady for
his superior assistance and support throughout the thesis process. I would also like to
express my appreciation to Commander Kevin J. Maher, Supply Corp, U. S. Navy for
recommending this topic. Furthermore, I want to thank Captain Thomas Erlenbruch,
German Army for his great troubleshooting assistance in the Geek Lab. I still don’t know
whether to thank or condemn all my other classmates for encouraging me to be a geek but

it sure was interesting getting there.

XXV

THIS PAGE INTENTIONALLY LEFT BLANK

XXV

I. INTRODUCTION

Historians aren’t sure when or why the first wargame was invented; but, they do
know that wargames have existed throughout the recorded history of mankind.
Contemporaries of the Chinese general and military philosopher Sun Tzu played his
wargame Wei Hai about 3000 B.C. Christopher Weikhmann’s peers played his wargame
Koenigspiel at the end of the 17" century. Modern wargamers play wargames as
(seemingly) simple as chess, as complex as JWARS, and wargames of any level of
complexity in between. Although vastly different in appearance, entertainment value,
rules, and complexity most of these wargames have a common thread running through
them: their utility as training devices.

Military personnel at all levels play wargames to ‘experience the realities of
decision making.” (Perla, 302) Students of Operational Logistics at the Naval
Postgraduate School play wargames for the same reason. A major issue in the
development of a military wargame is the balance between realism and playability.
Another issue is whether a particular game meets the training needs of specific users.
Since a single wargame is not capable of being realistic and playable while still meeting
the needs of all possible users, wargames are often developed to meet the needs of a
specific group of end users. Operational Logistics students are one such specific group of
end users. While there are a multitude of modern wargames and combat simulations, the
vast majority do not include logistics in the game play. The few models that do include a
logistics component (such as JWARS) require users to have a considerable amount of
training to obtain a basic working knowledge of the game’s operation, have an extremely
detailed level of resolution, and place the main emphasis on combat rather than logistics.
Thus, they are not suitable for basic Operational Logistics training.

Students of Operational Logistics at the Naval Postgraduate School take a
required course on the fundamentals of the Naval Logistics system. Part of the course is
spent using interactive computer simulations as training aids to better understand the
material being taught. A forerunner of the Operational Logistics Wargame called PRO-
LOG was developed in the 1980’s by NPS students and instructors to acquaint students

1

with logistical concepts. PRO-LOG is a deterministic combat model with a single
scripted scenario. It has virtually no graphic capabilities and has user interfaces that are
cumbersome and difficult to use. The wargame was written in Fortran, an archaic
language, and would require extensive program code changes to modify the wargame
structure at the most basic level. While PRO-LOG met the needs of students at the time,
advances in modeling combat techniques and computer technology have made PRO-LOG
obsolete; however, the reasons for PRO-LOG’s development still exist: Logisticians, like
warfighters , enhance their wartime capabilities by practicing with true-to-life
simulations. Although many basic combat models available today seem similar to this
simulation, the similarity is on the surface only and extends only to the combat between
the forces. Most basic combat models do not include logistics in the game play.
Including logistics in a model requires that logistical considerations be incorporated from
the very beginning. Retrofit of an existing combat model to add logistics simply isn’t
viable.

In order to meet the continuing goal of training Logistics Officers to make
effective decisions in a combat situation, the introductory Operational Logistics course
needed a modern replacement for PRO-LOG. To be a worthwhile replacement, the new
wargame needed to be written in modern code using the latest Operations Research
simulation techniques. It needed to be configurable, expandable, and stochastic. User
interfaces needed to be user-friendly. And, the amount of time needed to train players
needed to be equitable with the length of time that the Operational Logistics course
devotes to the wargame. The Operational Logistics Wargame exceeds all qualifications
desired in a replacement for PRO-LOG. It will assist Operational Logistics students in
understanding their roles.

The core programming of the Operational Logistics Wargame, as presented by
this thesis, deals with a Carrier Battle Group and its missions of command of the sea and
power projection ashore. Written in the Java programming language and in a modular
fashion, the wargame can be expanded in scope at a later date to include other combatant
missions and components such as submarines, amphibious forces, or ground forces. The

modular design allows the wargame to have modifications made to it without alterations

to components not directly involved. Component modifications and additions can be
made in future versions that make the wargame more complex and robust.

The wargame draws data from an outside database by using Structured Query
Language (SQL) and a JDBC driver. Due to the portability of the Java programming, the
wargame can be installed on most major operating systems. Other major design features
of the wargame are Discrete Event Simulation and extensive use of Graphical User
Interfaces (GUIs) for providing information to the player and obtaining information from
the player.

The Operational Logistics Wargame is intended as an introduction to Operational
Logistics only. It is a precursor to more complex and challenging wargames encountered

in Joint & Combined Logistics and Logistics Modeling coursework.

THIS PAGE INTENTIONALLY LEFT BLANK

II. METHODOLOGY

The Operational Logistics Wargame is a combat model designed with the best
Operations Research modeling and simulation techniques throughout. This chapter
highlights key design factors of the wargame and is divided into two sections. The first
section discusses the architecture of the combat model. The second section discusses the
design of the external database, which is the main source of data on the Carrier Battle

Group force structure.

A. MODELING AND JAVA PROGRAMMING

The core of the Operational Logistics Wargame is a discrete event simulation.
This core programming is wrapped in a layer of Graphical User Interfaces (GUIs) to
interact with the player and JDBC interfaces to obtain its data. The wargame provides
output through the use of data GUISs, output screens, and an animated map display.
Where appropriate, this simulation incorporates randomness for more realism than
deterministic, scripted events like its predecessor PRO-LOG.

This section describes the overall structure of the Operational Logistics Wargame,
and is intended to aid future Operational Logistics developers in modifying this wargame.
Figure 1 is a view of the program flow among the classes and shows the general
relationships. Each box in Figure 1 shows one or more Java classes that are related in
functionality. The uppermost class shown in each box is the central class for each of the
loosely knit groupings shown. The arrows in Figure 1 represent the flow of logic as the
game unfolds. After the actions headed by the CourseAndSpeed class are completed, the
Deployment class is instantiated. The Deployment class and its related classes comprise
the discrete event simulation portion of the wargame. The discrete event simulation has
significant interactions with the DataRepository, ArrivalProcess, and Animate groups
during game play.

In addition to the broad groupings shown, the classes are divided into Java

packages by functional area. Appendix A provides a more detailed description of

Figure 1. Wargame Programming Flow

6

OplogWelcome AfterWelcome \ IntelSummary
SwingWorker
PleaseWaitPanel
CourseAndSpeed LogProgressBar
CASGroupSetter / Databaselnfo
CasUnitSetter WeaponsData
CASListener ShipHashMap
SliderListener CLFPanel
v
Deployment
Controller DataRepository
Ship
BattleGroupMoverManager
ConstantRateMediator
EnemyBase
EnemyBaseGenerator ArrivalProcess
FriendlyBase SurfaceThreat
FriendlyBaseGenerator SurfaceThreatCourseGenerator
WeaponsStatus GenRandomDBTargets
LogStatus ThreatDataGetter
LogRates AirThreat
MoverHashMap AirThreatGenerator
AirThreatCourseGenerator
l PathMoverManager
Animate
Pinger
ControlPanel SelectActionsPanel
ScorePanel > SelectActionsListener
SimTimePanel
TheLogPanel
CLFStatus FireWeaponsPanel
FireResultsPanel
UnrepSummaryPanel
PlacedRASRequestsPanel MoreCourseAndSpeed
CheckUnrepSchedule MoreCasGroupSetter
ShipRASRequestsPanel MoreCourseandSpeedUnits
OrderListener MoreCasUnitSetter
DeleteUnrepRequest
UnrepScheduler
ShowOrderPanel

individual classes. All classes are contained in the package oplog or in subpackages such
as oplog.database for databases and related classes, oplog.gui for classes used to make
graphical user interfaces, and oplog.smd for classes used by the discrete event simulation.
Classes not discussed in the appendix are drawn from java, javax, and simkit packages.
The details noted here about each class are considerably more in depth than those found
in the Javadocs.

All program code and applicable Javadocs are included in some electronic
versions of this thesis. Some classes that are not used in the current version of the
Operational Logistics Wargame have also been included in those versions as a basis for

future development.

B. DATABASE DEVELOPMENT

The databases used in the Operational Logistics Wargame were implemented in
Microsoft Access but could have been in any SQL-compliant database with a JDBC
driver. The databases were designed specifically for this wargame and contain
information about forces assigned to both the Carrier Battle Group and enemy fleet.
CVBG data is actual real-world ship characteristics.

1. CVBG Database

The Carrier Battle Group database, named oplog.mdb, contains current
information on all U.S. Navy surface ships (both USS and USNS fleet assets) as found in
Jane’s Online and other unclassified sources. Information about each ship, such as its
maximum speed, available weapons, sensors, and logistical capacities are based strictly
on the ship’s class and cross-referenced throughout the database by ship class. Minor
differences between ships within a class are disregarded. Consumption of logistical items
(except fuel) is based on typical Naval Logistics Planning Factors which, like
consumption rates of other military branches, are calculated per person onboard per day.
Propulsion fuel is calculated using unclassified fuel consumption equations while
aviation fuel is calculated using a basic daily rate. The CVBG in the Operational
Logistics Wargame does not yet have the ability to launch aircraft. Therefore, aviation
fuel consumption is a basic daily rate rather than a basic daily rate plus a rate for number

of sorties. The current version of the database contains several tables marked
7

“(original)”. Those tables are intended for use when the wargame can be run in a larger
Java Virtual Machine. Tables by the same name but not marked “(original)” are scaled
down versions.

The organization of the database centers around the ships listed on the CVBG
table (Tablel). The “Ship” names, “Class” types and coordinates are all essential to the
Operational Logistics Wargame. “Ship Hull Number” is not currently used, and

“Number” is used to organize the data in the order desired for reports.

Ship Ship Hull Number Class XCoord|YCoord|Number
George Washington CVN 73 Nimitz 40 40 1
Bunker Hill CG 52 Ticonderoga| 60 60 2
Gettysburg CG 64 Ticonderoga 0 40 3
Nicholson DD 982 Spruance 20 0 4
Cole DDG 67 Arleigh Burke| 60 20 5
Rueben James FFG 57 Perry 0 20 6
Halyburton FFG 40 Perry 20 60 7
Blue Ridge LCC 19 Blue Ridge 40 80 8
Supply AOE 6 Supply 0 0 9

Table 1. CVBG Table

Nearly all data throughout the database is sourced using a ship’s type. Using the
class type, information about any ship in the CVBG can be accessed from the other
tables. A table containing all U.S. Navy combatant ships and CLF ships, not including
Amphibious ships, is included in the oplog database for reference (not shown). The
TypeData Table (Table 2) provides a variety of basic data concerning ship class types.
F76 fuel curve factors are included in the TypeData Table. The TypeSensors Table
(Table 3) contains the various air and surface sensors found on each type of ship. The

Sensors Table (Table 4) contains information specific to each sensor.

Max

Staying

Class |Mission Speed| Power Pers | F76p2 F76p1 F76p0 Notes

Kitty Hawk |carrier 32 5 5480 32.6666 |[-8937.6 [10865.9 |Fuelratein
KGal/hr

Kennedy carrier 32 5 5480 (32.6666 |[-8937.7 |[10865.9 |capacity is bbls

Enterprise |carrier 33 5 5765 |0 0 1 convert in code

Nimitz carrier 30 5 5930 0 0 1

Ticonderoga|combat 30 4 358 37.4831 |[-1429.04 (2215.39

Spruance |combat 33 4 339 27.0667 |-1812.92 |3097.97

Arleigh combat 32 4 346 51.5925 |-764.433 [1379.62

Burke

Arleigh combat 31 4 344 51.5925 |-764.433 [1379.62

Burke IIA

Perry combat 29 4 200 51.8843 |[-545.716 (951.117

Blue Ridge |combat | o4 4 1095 |112.9410 |92.0583 |699.553

Austin combat 21 3 666 95.4647 |-1124.43 [1566.79

Sacramento |station 26 2 601 12.2579 |-27553.4 |27821.2

Supply station 26 2 531 [-25.7866 |12117.20 |-12232.3

Kilauea shuttle 20 1 149 |8-86595 |16343.7 |-16150.3

Mars shuttle 20 1 176 [95-5118 |-1471.66 |1727.46

Sirius shuttle 18 y 175 55.5118 |-1471.66 [1727.46 |Sources:
Schrady 1996

Kaiser shuttle 20 y 104 -44.9642 |4834.54 |-4614.81 |Janes Online

2001

Table 2. TypeData Table

Class Air Surface
Kitty Hawk |SPS48E |SPS67
Kennedy SPS48E |SPS67
Enterprise [SPS48E |SPS67
Nimitz SPS48E |SPS67V1
Ticonderoga|SPY1B |SPS55
Spruance |SPS40B |SPS55
Arleigh SPY1D |SPS67V3
Burke
Arleigh SPY1D |SPS67V3
Burke IIA
Perry SPS49V5|SPS55
Blue Ridge |SPS48C [SPS65V1
Austin SPS48C |SPS10F
Sacramento |[SPS40E |SPS10F
Supply MK23 SPS67
Kilauea GenAir |GenNav
Mars GenAir |GenNav
Sirius GenAir |GenNav
Kaiser GenAir |GenNav

Table 3. TypeSensors Table

Radar |Range
SPS48E 220
SPY1B 200
SPS40B 175
SPY1D 200
SPS49V5| 250
SPS48C 220
SPS40E 175
MK23 25
SPS67 56
SPS67V1 56
SPS55 50
SPS67V3 56
SPS10F 54
SPS65V1 55
GenAir 25
GenNav 50

Table 4. Sensors Table

10

The TypeWeapons Table (Table 5) contains information about the weapons on
each type of ship. Note the use of “none” rather than “0” for ships that do not carry
certain weapons. To simplify inventory coding and calculations throughout the
Operational Logistics Wargame, weapons that typically fire multiple projectiles in a
single round are considered to have fired only one unit per firing event. The rates used to
convert multiple projectile rounds are noted. Information about each weapon is found in
the Weapons Table (Table 6). In the current version of the Operational Logistics
Wargame, the use of published unclassified weapon ranges by the CVBG would give the
advantage to the enemy since enemy damage to CVBG assets is not based on weapons
range. If a Surface Threat or Air Threat is within detection range of a CVBG asset and
that asset is detected, a weapon with unlimited range is fired. To ensure the enemy does
not have an unfair advantage, some ranges of CVBG weapons are increased as
compensation. Both real and adjusted ranges are provided in the Weapons Table.

The oplog database also contains extensive information about the logistical
aspects of the CVBG. Where necessary, the data is cross-referenced by class type. The
GPF Table (Table 7) provides Navy General Planning Factors for consumption of
Logistical Items. The TypeLogistics Table (Table 8) is similar to the TypeWeapons table
and provides information about each type of ship’s capacity for certain logistical items.
Fuel is referenced in barrels and other logistical items are referenced in pounds.

The final table of the oplog database is the CLFcapacity Table (Table 9). As the
name implies, this table contains information about the storage capacity on board the

different classes of CLF ships.

11

Class Harpoon|Tomahawk|SeaSparrow Sa S lilig)| - 2 Sparrm{v AL
rate capacity
Kitty Hawk none none 6 4 24
Kennedy none none 6 4 24
Enterprise none none 6 4 24
Nimitz none none 6 4 24
Ticonderoga 24 32 6
Spruance 24 32 2 4 8
Arleigh Burke 24 32 None
Arleigh Burke 24 32 None
A
Perry 24 none None
Blue Ridge none none 4 4 16
Austin none none 4 4 16
Sacramento none none 6 4 24
Supply none none 6 4 24
Kilauea none none None
Mars none none None
Kaiser none none None Source: TACLOG 1996
Table 5. TypeWeapons Table, partial data only
. Launch
Item Range|RealRange|Purpose|Weight weight Notes
Harpoon 72 72 ASUW | 2250 1500 All include 50% pack weight
SeaSparrow| 7 7 PD 3036 506 SS weight per 4 rounds
Tomahawk | 500 722 Strike | 4791 3194 range to allow for screen size
CIWS 5 5 PD 990 0.22 CIWS: weight per 3000 rounds
G5in 50 13 Strike | 10500 70 5in weight per 100 rounds
G3in 6 6 PD 4050 27 3 in weight per 100 rounds
SM2MR 200 492 AAW | 2337 1558 range to allow attack on air
when detected
SM1MR 200 22 AAW | 2035 1357 SRBOC weight per 10 rounds
Sources: TACLOG 1996,
SRBOC 5 5 PD 75 50 Jane's Online 2001

Table 6. Weapons Table

12

Item Rate Notes
Basic_Class_lI 11.37
Routine_Spares .64 |Does not incude CASREP major items

Fresh_Produce

1.0

subdivided from 2.42 original frozen rate

Medical_Consumables|.05

F44 5.66 |-6.11 + 2.31*numSorties in Kgal
Frozen_Goods 1.42 |F44 rate false since no sorties in game
Soda .63

Unit_Issue_Clothing |.09

Dry_Provisions

3.2

Source: Long 1992

Table 7. General Planning Factors

Class F76 | F44 |Dry_Provisions|Fresh_Produce|Frozen_Goods
Kitty Hawk 4761936000 360000 115000 160000
Kennedy 0(57000 360000 115000 160000
Enterprise 1190457000 380000 121000 172000
Nimitz 0{57000 390000 124500 177000
Ticonderoga 12000| 500 24000 7500 10700
Spruance 12000, 500 22200 7100 10100
Arleigh Burke 12000| 500 22700 7300 10300
Arleigh Burke 11A|12000| 500 22900 7300 10400
Perry 4800/ 500 13200 4200 6000
Blue Ridge 12000| 1190 74000 23000 33000
Austin 12000, 500 45000 14000 20000
Sacramento 12000| 500 40000 13000 18000
Supply 12000, 500 34800 11000 15800
Kilauea 16000, 500 97800 3100 4443
Mars 12000, 500 11700 3700 5300
Sirius 12000, 500 11400 3700 5200
Kaiser 12000| 500 6800 2200 3100

Table 8. TypeLogistics Table, partial data only

13

Class Fuel |Weapons| Stores |Weaps (tons)|Stores (tons) Notes
Sacramento|177000| 4300000|1500000 2150 750|fuel in bbls
Supply 156000 3600000{1300000 1800 650|weapons in Ibs
Kilauea 0| 3400000 0 1700 Olstores in Ibs
Mars 0 0{7850000 0 392542 gal per bbl
Sirius 0 0/5786000 0 2893
Kaiser 180000 0 0 0 0[Source: CNO

Table 9. CLFcapacity Table
2. Threat Database

The threat database contains only one table (Table 10). This table includes only
basic surface threat names and speeds. Other ship characteristics, such as surface search
radar range are written directly into the JAVA code. Currently, threat air assets all have

the same characteristics. Threat air characteristics are also written directly into the JAVA

code.

Type |Number|Speed
Cruiser1 1 20
Cruiser2 2 18
Destroyer1 3 17
Destroyer2 4 25
Carrier1 5 16
Carrier2 6 32
Patrol1 7 8
Patrol2 8 10
Patrol3 9 12
Patrol4 10 15
Frigate1 11 22
Frigate2 12 21
Frigate3 13 14
Cruiser3 14 23

Table 10. Threat Ships Table

14

C. METHODOLOGY SUMMARY

The Operational Logistics Wargame is a combat model with a solid Operations
Research foundation and is designed for Operational Logistics students. It is expandable
and configurable. Transparent to the user, the wargame uses the most up-to-date
modeling and simulation techniques with its discrete event simulation and stochastic
processes. The external database provides great flexibility in tailoring the wargame for
specific classroom environments. The remaining chapters of this thesis give detailed
guidance for players and referees of the wargame as well as recommendations for future

enhancements.

15

THIS PAGE INTENTIONALLY LEFT BLANK

16

ITII. PLAYER MANUAL

Operational Logistics Wargame

Player Manual

Figure 2. Courtesy of Professor D. A. Schrady

Amateurs discuss strategy,
Professionals study logistics

17

A. OPERATIONAL LOGISTICS WARGAME SUMMARY

The main goal of the player is to accumulate as many points as possible in either a
given time or until one side’s fleet is destroyed, as specified by the referee.
After the game begins, the player may perform one or more of several actions. These
actions include: firing weapons, ordering logistical items, adding new coordinates to a
ship’s track, changing a ship’s scheduled track, and quitting the game. Points (and
penalties) are accumulated through offensive actions, defensive capabilities and logistics
events.

1. Offense

To simplify game play, any weapon not designated Point Defense may fire at any
threat target. No distinction is made among ASUW, AAW, or Strike weapons as to
usage. Destructive power of specific weapons is not taken into account. From the
beginning of game play, players are aware of the location of threat ports and bases. The
player may fire weapons at threat ports and bases during any pause. To discourage the
player from indiscriminately firing weapon without regard to range, if a weapon is fired
at a target that is out of range, a penalty will be accrued (and the weapon will still be
expended). Ifin range, a random number will determine whether the base or port is
damaged, destroyed, or missed based on the respective probabilities. In the event of
damage without destruction, Staying Power is decremented. Points are given when the
enemy is damaged or destroyed. Penalties accrue when distance to target is outside a
fired weapon’s range.

2. Enemy Detection

Air Threats and Surface Threats are only shown to the player if detected by the
respective air or surface radar. Radar ranges of the CVBG assets are those found in
Jane’s Online. Detection of a threat contact that is in range of the radar is determined
stochastically. Upon detection, the player is notified. Ships that have no offensive power
can report detection of threats but have no means of eliminating the threat.

3. Defense

Firing of defensive weapons is not under the control of the player in this game.
However, it is the player’s responsibility to ensure that an adequate supply of Point

Defense weapons are onboard the ships at all times. It is also the player’s responsibility
18

to ensure that Battle Group formation decisions are made with due regard to both
offensive and defensive actions. Point Defense weapons are automatically consumed
whenever that ship is attacked and ships with self-defense capabilities have higher
assigned Staying Power than those without. The player is notified when any attack is
made by a threat asset. Attack by a threat asset may result in damage, destruction, or no
damage at all to the Battle Group unit.

Detection of CVBG assets by enemy air and surface threats is determined in the
same stochastic manner as that of CVBG detection of threats, when within radar range.
If the enemy detects and fires upon a CVBG asset, there is no guarantee that the threat
will subsequently be detected by CVBG assets. Threat bases have no offensive
capability. Penalties are accrued when ships are damaged or destroyed. Ships are
repaired to full Staying Power during port visits.

4. Logistics

a. Logistics Items

For realism, at game start each ship has between 75 and 100 percent of its
capacity of each logistical item including weapons as determined by a random number
draw. Logistical items not including fuel or weapons are consumed on a per-man per-ship
per-day basis. Fuel and weapons consumption are based on actual usage. All logistical
items and weapons (except Tomahawk and Harpoon) can be replenished through
underway replenishment with the Combat Logistics Force (CLF) ship and port visits.
Tomahawk and Harpoon may only be replenished during port visits. In the Operational
Logistics Wargame, all other weapons can be replenished at sea.

b. Logistics Units

Fuel capacity throughout the game is in barrels. Stores capacity is in
pounds. Weapons are referenced using both weight and number of units. Each ship can
only carry a specific number of each type of weapon but the Combat Logistics Force
capacity is limited by total weapons weight not total number of weapon types or units.
Therefore, weapons are ordered by weight with both number of units weight shown.
When a weapon is fired in rounds, 1 unit is the equivalent of 1 round. For example, 1

unit of 5 in gun ammunition is equivalent to 100 projectiles of 5 in gun ammunition.

19

c. Replenishment Requests

To conduct underway replenishment with the station ship, logistical items
must first be ordered from the CLF ship. In the basic game, the only CLF ship used is a
“station” ship. The station ship capacity is based on published capacities for fuel,
weapons, and stores. As with each ship’s supply status at game start, the station ship
starts the game with between 75 and 100 percent of its capacity as determined by a
random number draw. Items may be ordered during any game pause and are assigned a
priority (either routine or urgent) as the player desires. Ordered items assigned a routine
priority are filled in due course. Routine unrep orders may or may not arrive during the
next unrep, depending upon previously submitted orders for all ships. Orders placed with
an urgent priority will normally be received during the next unrep. Penalties accrue for
use of urgent priority. Penalties also accrue when inventory of a specific item falls below
40 percent. More severe penalties accrue if inventory falls to zero. Points are given for
ships maintaining inventory above 50 percent between replenishments. Items ‘received’
during unrep in excess of the ship’s capacity are not added to the inventory but do not
accrue a penalty. At this time, there is no provision for canceling an order manually. Port
visits result in cancellation of all outstanding unrep requests for that ship. Unreps occur
automatically when the CLF ship is within range of a ship for which it has orders. There
is no game delay during underway replenishment. Detection range for underway
replenishment is currently set at 30 miles. Once the CLF ship’s capacity is exhausted, it
must be ordered back to a port for re-supply. Upon reaching port, the CLF ship’s
capacity is filled based on existing orders in a first-in first-out manner (with regard to
priority). There is no delay of game for the CLF ship while it is in port.

d. Port Visits

Port visits occur whenever a ship is within range of a friendly port.
Detection range for port visits is currently set at 30 miles. Since real-life port visits
detract from a ship’s ability to conduct its combat mission, in the Operational Logistics
Wargame, penalties accrue for any port visit by a ship that is not a CLF ship. During a
port visit, all logistical items and weapons including Tomahawk and Harpoon are
replenished. Any ship that has been damaged is repaired to full operating status. There is

no delay of game for a ship during the port visit.
20

B. GAME PLAY START-UP

1. Installation

The current version of Simkit and Java that are being run in the Operations
Research Department at the Naval Postgraduate School must be installed on the computer
where the game is to be played. A JDBC driver must also be installed for both the Oplog
database and the threat database. In a Microsoft Windows environment, the driver can be
established by installing a Microsoft Access driver in the ODBC Data Source panel and
using the JDBC-ODBC bridge that ships with the Java Development Kit. The Player
DSN name that refers to the Oplog database must be “wargame”. The Player DSN name
that refers to the ThreatDB database must be “wargameThreat”.

2. Initialization

The Operational Logistics Wargame begins when the player inputs the applicable
code on a Dos command line or otherwise executes the main method of the program.
Running the wargame in a JAVA IDE is not necessary and is not recommended.
Command line code to start the game will typically be:

“java oplog.gui.OplogWelcome”

C. WELCOME SCREEN

Upon game initialization, the player can select to start a new game or abort the
game as shown in Figure 3. Throughout the game, whenever possible, buttons have
keyboard mnemonics assigned. Buttons with shortcut keys use the underlined letter as

the assigned mnemonic.

21

D.

Eg’ﬁ Operational Logizticz Wargame = | Ellil

Welcome to the new and improwved
Operational Logistics Wargame. If wyou
would like to run this game click the
START DEPLOYMENT button.¥ou may EesSume a
previously sawved game by clicking the
EESUME A DEPLOYMENT button. (Sorry, EESUME
iz not functional vet.] Otherwiszse, click
the ABORT DEPLOYMENT buttorhi.

. START DEPLOYMENT

BEESUME A DERLON R ERN |

AHORT DEPLOYMENT |

Figure 3. Operational Logistics Wargame Panel

PLEASE WAIT PANEL

noting that a delay will occur appears (Figure 4):

E.

E;g Pleaze Wait

Flease wait. The database is being accessed. This may take a few mintues.

While the game is loading, when short delays are expected to occur, a window

=101 %

Figure 4. Please Wait Panel

INTELLIGENCE SUMMARY

After selecting a new game, the player is provided information concerning the

game. This information includes an intelligence summary, composition of the Battle

Group and CLF ship status, logistics status, and weapons status. The player may review

the displayed data at leisure. When ready to proceed, the player must decide whether or

22

not to remain in port before deployment to replenish all supplies and weapons or to
deploy immediately with the amounts onboard as indicated in the Logistics Status and
Weapons Status tabs. Should the player decide to remain in port for replenishment, a
penalty will be assessed. After the presail decision is made, the player may click the
Click this button when ready to proceed button at any time. The Intelligence Summary
data are presented in Tabbed Pane format.

1. Intelligence Summary Tab

The first tab of the Intelligence Summary Panel is the Intelligence Summary Tab
(Figure 5). This pane is a textual description of the intelligence scenario and does not

require or allow any input from the player.

E‘glntelligence Summary . -3l x|

arres Rules' Battle Group Summanfl Current Logistics Statusl Current Weapons Status | PreSail Decisionsl

This area i5 under construction.
Your mission, should you choose to accept it, is to deploy your Battlegroup in whatewer formation(s) you

desire. Sail at whatewer speeds you feel are appropriate toward the enewy ports and bases., Attack them
when within range. Take offensive action against Surface and Air Threats when you encounter them.

Actual display may be different

Click this button when ready to procesd

Figure 5. Intelligence Summary Tab

23

2. Game Rules Tab

The second tab of the Intelligence Summary Pane is Game Rules Tab (Figure 6). This
tab is a textual description of the most important rules of the Operational Logistics

Wargame. This tab does not need or allow input from the player.
=]

Intelligence Summary Games RUlBS?l Battle Group Summanrl Current Logistics Statusl Current Weapons Status | PreSail Decisinmsl

3orry, this areas is still under construction, please read the mamaal.

Actual display may be different

Click this button when ready to procesd

Figure 6. Game Rules Tab

3. Battle Group Summary Tab

The Battle Group Summary Tab (Figure 7) is the third tab of the Intelligence
Summary Panel. This tab provides pertinent information to the player concerning the
Battle Group’s composition. All ships in the Battle Group are listed along with their
main missions, maximum speeds, and number of personnel. This panel also displays the
starting status of the Combat Logistics Force ship. The total amount of fuel, stores, and
weapons that the CLF ship has onboard at game start is a random amount between 75%
and 100% of its capacity for each broad type. This tab does not require or allow input

from the player.

24

g’ilnlelligence Summary I =31 x|

| Gurrent Logistics Status | Gurrentweapans Status | Presail Decisions |

Intelligence Summar\fl Games Rules

George Washington Max Speed 30 Mission: combat Persomnel: 5930 ;o

Bunker Hill Max 3peed 30 Mission: combat Persommel: 353
Nicholson Max Speed 33 Mission: combat Persommel: 339
Cole Max Speed 32 Mission: combat Personnel: 346
Fueben James Max Speed 29 Mizsion: combat Perzonmel: 200
Supply Max 3peed 26 Mission: station Personnel: 531

Actual display may be different

CLF Status

CLF Fuel on board (in BBLS), Capacity: 156000

T4FPercent

CLF Vyeapons on board {in [be), Capacity. 3600000

CLF Stores on board (in lhs), Capacity: 1300000

2FPercent

Click this button when ready to proceed |

Figure 7. Battle Group Summary Tab

4. Current Logistics Status Tab

The fourth tab of the Intelligence Summary panel is the Current Logistics Tab
(Figure 8). This tab has a separate tab panel for each ship in the CVBG. The individual
ship tabs show the starting status of each logistical item that the ship has onboard. The
starting status is between 75% and 100% of the ship’s capacity. This tab does not require

or allow input from the player.

25

Egalnlelligem:e Summary L gl x|

Intelligence Summaryl Garmes Hulesl Battle Group Summary | Cutrent Logistics Status}l CurrentWeapons Statusl PreSail Decismnsl
1SS George Washington USS Bunker Hill | USS Micholson | UBS Cole | USS Rushen James | LSS Supply|

F76 on board, Capacity: 12000 =

95Fercent

F44 on kinard, Capacity 500

a5Fercent

Fresh_Produce on hoard, Gapacity 7500

A6FPercent

Frozen_zoods on hoard, Capacity: 10700

I <21 display may be different I

Ciry_Provisions on board, Capacity, 24000

d2Percent
Basic_Class_|l on board, Capacity: 85500

Y8Percent

Soda on board, Capacity: 4700

Routine_Spares on board, Capacity: 4700

97Percent

Click this button when readyto proceed

Figure 8. Current Logistics Status Tab

5. Current Weapons Status Tab

The last informational tab of the Intelligence Summary Panel is the Current
Weapons Status Tab (Figure 9). This tab has a separate tab panel for each ship in the
CVBG. The individual ship tabs show the starting status of each weapon that the ship
has onboard. The starting status is between 75% and 100% of the ship’s capacity. This

tab does not require or allow input from the player.

26

Egalnlelligence Summary L - 0O x|

Intelligence Summaryl Garmes Rulesl Battle Group Summawl Cutrent Logistics Status CUFFENWEGDUHBStaTUSI Pregail Decisiunsl
USS Gaarge Washington | USS Bunker Hill| USS Nichalsan USE Cole | USS Rueben James | USS Supply|

Harpoon on hoard, Capacity, 24 |

45Fercent

Tormahawk on board, Capacity: 32

75FPercent

CMYS on hoard, Capacity: 5

BOPercent

GSin on board, Capacity, 6

SM2ZMR on board, Capacity, 60

Actual display may be different

Click this button when ready to proceed

Figure 9. Current Weapons Status Tab

6. PreSail Decisions

Prior to deployment, the player must decide whether to delay sailing in order to
top off all consumables or to deploy immediately. Should the player decide to remain in
port, a penalty is accessed. (See the penalties section for more information on game
penalties.) The Presail Decisions tab (Figure 10) allows the player to decide which
option to pick. The player selects the button corresponding to the presail decision made.
A specific decision must be made by the player or the game will not proceed. After

making a decision, the player should click Click this button when ready to proceed.

27

Egj Intelligence Summary _= -

Intelligence Summaryl Games Rulesl Battle Group Summawl Current Logistics Statusl Current\Weapons Status F'

" Remaininport & delay sailing to top off all consumables (penalty involved)

" Deploy immediately

LClickthis button when ready to proceed

Figure 10. PreSail Decisions Tab

F. SETTING COURSE AND SPEED

To begin the deployment, the player assigns the ships to sail together as a fleet or
individually. Some ships may be selected to sail in formation while the remainder sail
individually. Among other things, this option allows the CLF ship to sail to port, with or
without escort, while the fleet sails toward the objective. Otherwise, the CLF ship will be
unable to do underway replenishment once its initial stores run out. The player selects
the ships’ initial courses and speeds and the deployment begins.

1. Course and Speed

In the first graphical user interface of this section, entitled Course and Speed
(Figure 11), the player should click on the check box of any ship that is to be assigned to
sail in the Battle Group formation. In the Course and Speed selection panel, if the player
wants to select only ships to sail individually, do not select and check boxes and click the

Start button. After choosing the Battle Group ships and clicking the Start button, the next

28

panel opens. Note: ships may be added or removed from the main Battle Group during
any pause of game play. Additionally, ships may be assigned to sail in multiple, smaller

groups as desired during game play.

Egj Course and Speed I, =10] x|

To set the course and speed for your Battle Group,
¥OU may set the course and speed for the entire
CVBG, or for only a select group of ships with
individually assigned courses and speeds for the
remaining ships. Ships whose courses and speeds
are assimmed as a group will sail in a standard
formation and will hawe their actual coordinates
deconflicted automatically.

Please select which ships, if any, you would
like to assign group course and speed. Then click
the START BUTTON.

[George Washingtare
[~ Bunker Hill

[Michalson

[Cole

[Rueben James

[Supply

START |

Figure 11. Course and Speed Panel

2. Course and Speeds for the CVBG (by group)

After proceeding from the previous panel, the Course and Speeds for the CVBG
(by group) panel opens. (Figure 12) In this panel the player selects a speed for the Battle
Group by moving the speed slider to the desired speed. The maximum possible speed is
the lowest maximum speed of all ships in the intended group. The player also selects the
Battle Group’s initial course from Homeport to any desired location. The course is
selected by clicking the Start/reset coordinates button then clicking significant waypoints
along the desired course. The selected track is NOT shown on the screen. However,
once a course has been chosen, clicking on the Print coordinates button prints the
selected waypoints on a separate output screen. (Figure 13) Clicking the Print
Coordinates button also enables the PROCEED button. The coordinate system used is
the standard JAVA coordinate system where the origin is the top left corner of the
designated window and x increases to the right with y increasing down. If the

coordinates displayed are satisfactory, the player should click PROCEED.
29

[Course and Speeds for the CVBE (by group) . B x |
D€

Selectthe group speed (in kis)

} Etarireset coordinates Print coordinates PROCEED |

Figure 12. Course and Speeds for the CVBG (by group) Panel. After Ref. National
Geographic.

Il 72 Dutput Window [OplogWelcome = 120 =10 xj
Eoordingte: Java.awt. Point[x=22;¥=25]
Conrdinate: Java.awtsPointlx=71,7=270]
Coordinate: java.aut.Point[x=71,7=430]
Coordinate: :| ays, ayt, Polnt[x=147,7=334]
Conrdinate: java.awt.Point[x=187,y-298]
Coordinate: Java. ﬁwt.i'P_ﬁ'ir:_n;._[T-'::Sfﬁ_J_; ..-‘::at_r——zj_l.']
Coordinate: Java.ant.FPoint[x=539,7=367]

prgon et | |

Figure 13. Sample CAS Group Output

30

Otherwise, the player may click the Start/reset coordinates button to try again.
The basic version of this game does not differentiate between land and water. So, the
player must take care to ensure that the ships do not sail across land. A future
enhancement of will include a land-avoidance algorithm.

Note: All map backgrounds in the Operational Logistics Wargame and depicted in
this document were obtained from the National Geographic Website

(www.nationalgeographic.com) and have been altered by the author. All icons used in

the Operational Logistics Wargame and depicted in this document were obtained from a
variety of sources including theses by Lt J.R. Sterba and Lt A.W. Troxel as well as Web
Clip Art Website (www.webclipart.about.com) and Air War College Website

(www.au.af.mil/au/cpd/cpdgate/clip_af.htm) . All icons have been altered.

3. Course and Speeds for Individual Ships

Ships shown on individual tabs in the Course and Speeds for individual ships
panel (Figure 14)) are all of the remaining ships of the Battle Group that were not
selected to sail in formation. This panel is set up in much the same fashion as the Course
and Speeds for the CVBG (by group) panel. However, the PROCEED button is not
enabled until an individual course has been set for each ship shown. The course or speed
for any ship listed may be changed at any time prior to clicking PROCEED. The selected
coordinates are also printed to the output screen. (Figure 15) When the player clicks
PROCEED, additional database information is drawn during a short wait and game play

begins.

31

http://www.nationalgeographic.com/
http://www.webclipart.about.com/
http://www.au.af.mil/au/cpd/cpdgate/clip_af.htm

24 Course and Speeds for individual ships o [=[|

US

i LI5S Rueben Jamesl USS Supply

Selectthe speed (in kis) for USS Micholson
e b Startreset coordinates: Michalson Sef & Frintconrdinates: Mischalson Frogeed

0 5 10 15 20 25 230

Figure 14. Course and Speeds for individual ships Panel. After Ref. National
Geographic.

& Outpul Window [OplogWelcome - 140 =| !XI
Fuchen James: Coordinate: java.awt,Point[==64,y=593] I=l
Rushen Jaued: Coordinate: jeva.avt. Poinn[x=64,v=33]
Ruchen Jamed; Conrdinate: java.awt.Point[x=ad,y=03]
Fiaeben James: Coprdinate; java.swt.Pointlx=125,3=323]
weben Jauss: Coprdinate: java.swr.Boint[x=128,7-323]
meben Jaues: Coordinate! java.awt.Polnt[x=125,y=323]
ueben dames: Coordinate: jawe.awt. Point[x=347,7=235]
Puehen James: Coordinate: java.awt.Point{x=347,y=235]
Bucken James: Coordinate: java.awt. Point[x=347,y=235]
Cole: Coordinate: Java.avt. Print[x=83,y=282]

Cole: Coordinate: java.smt.Point[¥=63,7-282]

Cols: Coordinate: java.sawt.Polht[x=83,y=282]

Cole: Coordinate: java.awt.Point{x=305,y=233]

Cole: Coordinate: java.awt.Point[x=305,y=233]

Fole: Coprdinate: java.ayt.Poinn[x=308,y=235]
Fupply: Coordingte: Java.awt.Polnt[x=386,¥=243]
Fupply: Coordinete: Java.awt.Point[x=386,¥=243]
Supply: Coorditate: jave.swt. Point{x=386,y=243]
Conrdinate: java.art,Polnt[x=473,y-348]

: Coordinate: java,awt.Polnt[x=473,y=348]

v: Conrfinate: javeavt.Pointiz=474,y=348]

Figure 15. Sample Individual Ship CAS Output

32

G. ANIMATION

The Animation Frame has three main sections: The Animation Tab, the Actions
Tab, and the Control Panel.

1. Animation Tab

The Animation Tab (Figure 16) is an animated graphical display of the game as it
progresses. The current map is displayed with existing friendly and enemy bases. As the
CVBG’s ships sail at various speeds and courses, their progress can be seen on the
screen. Ships sailing in formation will normally appear as one unit and as a single icon
while the ships sailing individually will be distinguishable. If a surface threat or air threat
is detected by CVBG sensors, the threat unit’s icon is also displayed at the appropriate
coordinates for the duration of its detection. If any friendly or enemy unit is destroyed,
the icon for that unit is removed from the display. The Animation Tab does not require

or allow any input from the player.

Figure 16. Animation Tab. After Ref. National Geographic.

33

2. Actions Tab

The primary GUI of the Operational Logistics Wargame is the Actions Tab. This
tab provides a multitude of information to the player and allows the player to take action.
The wargame is designed to pause its simulation and animation whenever certain events
occur that warrant notice to the player. Events that cause the simulation to pause
automatically include:

- First detection of enemy air or surface threat (multiple detections are
simply logged).

- First detection of threat bases and ports within range of surface radar.

- Loss of contact of a threat by all CVBG assets.

- Damage or destruction of an enemy by the CVBG.

- Damage or destruction of a CVBG asset by the enemy.

- Port visits.

- Underway replenishments.

- Ships reaching the end of scheduled tracks.

a. Reason For Auto-Pause Panel

The uppermost panel seen on the Actions Tab is the Reason for auto-pause
panel (Figure 17). Whenever the game is paused automatically, the event that caused the
pause is noted in this panel. This panel does not require or allow player input.

b. Score Panel

The total accumulation of all penalty and bonus points is noted in the
Score panel (Figure 17). This panel is updated at every pause. This panel does not
require or allow player input.

c. Sim Time Panel

The simulation time at the instance of the pause is shown in the Sim Time
panel (Figure 17). Simulation time is shown in hours. This panel does not require or

allow player input.

34

@Animalion Show

w | ow | ow]| e |

Animation Aetions,

~Readon for auto-pause

I'I'hreat Detected: Patrol4 Location; (400,00, 342.35) Time: 140454

—Soare:

BT TifE

140:454

[5485 pis

~Game Surmtran: Log

Gawe Hrtart, Time: 0.00

Nicholson Unrep (penalcy, 1f denied), Time: 0.000

Bunker Hill Unrep (penalty, 1f denied), Time: 0.000

Cole Tnrep (pemalty, 1f denied), Time: 0.00L

Ruebhen James Unrep (penalty, 1if denied), Time: 0:.001

George Washingtorn Mhrep (penalty, if denied), Time: 0.001

Built-in Default pause

Supply port wisit with repairg (penalty if not CIF)] Time: 38.152

Cole port visit with repairs (penalty if not CLF) Time: 41.209

Tetected: AirThreat [38.314], Location: (337.39, 418,61}, Time: 44,165

Threat Detected: PFatreld Loecstion: (301.21, 288.54) Tiwe: 46.008

Lost: AirThreat [38.314], Time: 46,895

Threat Patrold lost , Time: 47.214

Detected: AirThreat [54.949], Locaciom: (23.19, 299.71), Time: 54.963

Multiple Detectipn: AirThreat [54.949], Location: (23,85, 299,63), Time: 54,967
Multiple Derecticn: AirThreat [54.949], Location: (48,41, 297.07), Time: 55.090

supply atvacked, PD Used ., No dawmage: 2 Time: 55,730

AirThreat [54,949] destroyed Time: 55.730

Rueben James port vigit with repairs (penalty 1f not CLF) Time: 58,328
Threat Detected: Cruiserd Location: (Ll&3.62, 293.10) Time: £1.681
Threat Cruiser3d lost , Time: 63,803

Threat De"';_ac_.tzd: Cruzserd Location: (26_3._88, 281.59) Time: 68,069

Miultiple Detectioh: AirThreat [54.9497, Locatiom: (115.4%, 290,04, Time: 55,427

|»

Felect the fplloving
actions that you would
Tike to perforw. 'Change
Course' incerrupts
CUrLent course. 'Add New
Coordinates' adds
coordinates to the end of
the turrent path. Either
Gourge choice works for
‘EnfdMoves'

" Fire YWeapong
a

Tt 3

" Change Colrse
T Add new coordinatas:
O SaveDarmearm il

Take Action |

GLF Fuel on board (n BBLS), Capacity 158000

GLF Weapans on hoatd (ih 195), Capdeity 3600600

100Fercent

Figure 17. Actions Tab, View 1

d. Game Summary Log Panel

The Game Summary Log panel (Figure 17) contains a list of all pertinent

events that have occurred during the Operational Logistics Wargame and the time the

event occurred. In addition to all auto-pause events, this log contains a listing of all

multiple detections and undetections by CVBG assets. This log does not contain any

events, significant or not, that are not known to the player. For example, a surface threat

generated by the wargame would not be noted on the log unless detected by the CVBG.

This panel does not require or allow player input.

e. Select Actions Panel

The most important player input panel is the Select Actions panel (Figure

17). The Select Actions panel allows the player to control various aspects of the game.

Actions that the player can select to perform include:

35

- Firing weapons,
- Review and place unrep requests,
- Change the course of a ship or ships,

- Add waypoints to the end of a course for a ship or ships,
- Save and Exit the game. (This feature is not functional.)
The player selects which action to take by clicking on the appropriate radio button for the

selection then clicking the Take Action button. See individual sections of this manual for

detailed descriptions of each of these selections.

JA CLF Status Panel

The CLF Status panel (Figure 18) is similar to the CLF status displayed before

game start. It displays the current status of the Combat Logistics Force ship. The total

amount of fuel, stores, and weapons that the CLF ship has onboard at the time of the

simulation pause is shown here. This panel is updated at every game pause. This tab

does not require or allow input from the player.

@Animalion Show

Animation Aetions,

-G8 Sy L

Game Start, Time: 0.00

Nicholson UThrep (penalty, if denied), Time: 0.000

Bunker Hill Unrep (penalty, if denied), Time: 0,000

Cole Untep |penalty, if denied), Time: 0,001

Ruehen James Unrep (penalty, if denied), Time: 0.001

George Washington Onrep (penalty, 1f denied), Time: 0.001

Built-in Default pause

“Supply port wizit with repairs (pemalty if riot CLF) Time: 35.152

Cole port wisit with repairs (penalty if not CLF) Time: 41.209

Détepred: AirThreat [38.3148], Location; (337,39, 418,61), Tiue; 44,155

Threac Decected: Pacrold Locaciom: [30L.21, Z88.54) Time: 46.008

Lost: LirThreat [3&.514], Time: 46,895

Threat Patrold lost , Time: 47.21d

Detected: A1rThreat [54.949], Location: (23,19, 299.71), Time: 54,963

Mulriple Detection: AlrThreat [54.949], Location: (23,85, 299.63), Time: 54.9%967
Multiples Detection: AirThreat [54.949], Location: (48,41, ‘297.07), Time: 55.090

‘fupply attecked, PD Used , No damags; 2 Time; 55,730

LirTHreat [54,949) destroved Time: 55,730

Buebtn James port wisit with repairs (penalty if not CLF) Time: 5§.3268
Threat Detected: Cruiserd Locationd (163.62, 293.10) Time: 61.681
Threat Crulser3 lost , Time: 63,803

Threat Detected: Crulserd Locatiom: (263.88, 281.59) Time: 66.06%9

Multiple Detection: AirThreac [§4.949], Location: {115.48, 250.04), Time: 55.427

-actions that you would

course choice works for

Select the following

like to perform. ! Change
Course' interrupta
current course, ‘Add New
Coordinates' adds
coordinates to the end of
the current path. Either

'EndMowes!

" Eire Weapong

" Change Course
" dd new coordinates
£ SeeE Sarre and 240

Take Attion |

CLFFuel on board {in BBLS), Capacify 156000

CLFWeapons orchoard 4n), Capactty 3600000

GLF Btafes anbinard (n 1623, Capacty: 1300000

100Farcent

100FPercent

CLF Status 100Perzent

Figure 18. Actions Tab, View 2

36

g Logistics Status Panel

The Logistics Status panel (Figure 19) is also similar to its counterpart that
was provided at game start. In addition to previously described information, this panel
shows the current Staying Power of the indicated vessel. This panel is updated at every

game pause. This panel does not require or allow player input.

[&i Animation Show =100 x|
|} | u | M | Exit |
Animation Actions
USS George Washington | LSS Bunker Hill | USS Nichn\snn' LSS Cole | USS Rueben.Jamas | USS Supply’l
‘ |Currem Staying Power: 5 of & |_
F7& on board, Capacity. 0
OPercent
F44 on board, Capacity: 57000
Fresh_Produce on hoard, Gapacity. 124500
82Percent
Frozen_Goods on board, Capacity: 177000 =
95Percent
Dry_Provisions on hoard, Capacity: 390000
S0Fercent
2
-
1 | {_l.

Figure 19. Actions Tab, View 3

h. Weapons Status Panel
The Weapons Status panel (Figure 20) is similar to its counterpart that was
provided at game start. This panel does not require or allow player input and is updated

at every game pause.

37

[&} Animation Show -0l x|
u | u | M | Exit |
Animation Actions

95Percent -

Dry_Provisions on hoard, Capacity: 3390000
90Percent

USS Gearge Washmgtunl USS Bunker Hill | USS Michalson USE Cole | USS Rueben James | USS Supply’l

Harpoon on hoard, Capacity: 24 =~
B7Percent

Tomahawk on board, Capacity: 32
G4FPercent

CIWS on board, Capacity: 5
&0Fercent

GAin on board, Capacity: 6 |
&3Fercent

SM2MR an board, Capacity: 60
G6Percent

K|
i =

Figure 20. Actions Tab, View 4

3. Control Panel

The Control Panel (seen at the top of Figure 20) provides the player very basic
control over the progress of the game and subsequent animation. Each button on the
Control Panel has a tool tip that pops up when the cursor is moved over the face of the
button. The player can choose to Stop the animation portion of wargame which stops the
animation screen from refreshing. The player can Pause the animation and the
underlying simulation. The player can Resume the animation and simulation. Or, the
player can Exit the wargame altogether. The current version of the wargame does not

have the capability to save a game in progress.

38

H. PANELS SPAWNED BY SELECT ACTIONS PANEL
As previously discussed, there are several actions that can be accomplished from

the Select Actions panel on the Action tab of the Animation Window.

1. Fire Weapons Panel

The Fire Weapons panel (Figure 21) allows the player to take offensive action
against surface threats, air threats, and enemy bases or ports. The left side of the panel
lists all Battle Group assets with offensive capabilities and their current positions. A ship
that normally has the capability to fire a specific weapon but does not have any onboard
at that time shows a ZERO inventory level for that weapon. On the right side of the
panel, all existing enemy bases or ports and all detected surface or air threats are
displayed. The current position and staying power of each target are noted.

The current version of the Operational Logistics Wargame does not discriminate
between offensive weapon types. Any weapon shown on the Fire Weapons panel may
fire at any target. Due to a variety of reasons, the standard range of several of the
weapons have been modified for this wargame. The range currently assigned to each
offensive weapon is shown in Table 11. It is the player’s responsibility to determine if

specific weapons on a platform are in range of a specific target.

39

E&E'File Weapons = EII_)ﬁ

Select the ship end weapon that you would like to fire at a Specific target. Point Defenseé Weaponsz and ships with only point
defende Weapond are noU shovn. When CUrrent invehtory of & Weapon 15 zerd, it is not shown, Check the weapons status panel for
ingentory lewels, For simplicity, weapons have renge of S0nm (GSin), 72mm (Harpoon), 200mm (SM1/2), or 500nm |Tomakiawk). User
15 responsible £or deteruining if o SHECIEe Weapsn gen rsach the seleoted target. (1T Hot, thers will be = penalty.) Only one
weapon may be Fired at & time, Inventory cm the main soreen iz NOT i_ipﬂ_‘atéé betwyeen Eirings tnless it reaches zero. Click the
FIRE BUTTON to fire. Cloge this frame when Finished firing.

" EnemyPor Logation: (340,00, 426:00) Current SR 10
 EnemyBase] Lagation: (700:00, 500.00) Cirrent SP:10

o " EnemyRase2 Location: (700:00, 100,00y Current 9310
C G6inROBIE (™ AirThreat | 69,564] Location: (56519, 265.40) Gurrent 5P
€ GMINR ROB: 6 (" Frigatel [£9.049] Logation: (369 67, 260.48) Curiant 5P 3
Richolsan, Posifion: (358,70, 213,83)
" Harpooh ROB: 24
= Tomshawk RDB: 32
" G5in ROB: B
Colg, Position: (178,67, 29278
" Harpton ROB 23
 Tarmahak ROB: 27
" GAinROE &
= SMIMR ROS: 46
Rugben James, Fosition; (37377, 210.00)
" Hérpoon ROE; 24

 SMINR RGB! 30 Fite |
I | o

Q{us_e

Figure 21. Fire Weapons Panel

Weapon |[Range
Harpoon 72
Tomahawk| 500
CIws 5
G5in 50
SM2MR | 200
SM1MR | 200

Table 11. Oplog Weapon Ranges

Each firing action fires 1 unit of the indicated weapon at the chosen target. The

player selects a weapon to fire by clicking on the radio button next to the desired weapon.

The player selects the intended target in a similar manner. After both a weapon and a

target are chosen, the player should click Fire. Through generation of a random number,

a determination is made as to which of several results occur when a weapon is fired.

40

Results of weapons firing include: destruction of a target due to one well-placed shot or
due to reduction of the Staying Power to zero, damage of a target and reduction of the
target’s staying power by 1, a missed shot or a shot that hit the target but did not damage
it, a shot that was not in range of the target and subsequent penalty, or an attempt was
made to fire a weapon that is out of stock and subsequent penalty. A Battle Damage
Assessment panel appears to report the results of each weapon firing. Examples of each
of the possible weapons firing results are shown as Figure 22 thru Figure 27. After each
weapons fire, the Fire Weapons panel is updated to reflect the new target and weapons
inventory status. The player may repeat the fire weapons process as many times as
desired. When done, the player should click Done to terminate the panel and return to the

main Action tab.

Battle Damage Aszessment | ;LD_{EI
Results of weapons fire! |
EnermyBasal destroved by lucky shot. Time: 88.522 glnse:

Figure 22. BDA Report: Lucky Shot
R
Results af weapons firg!
Carrier? [39.675] destroved: Time: 35,680 Elose |

Figure 23. BDA Report: Destruction
Battle Damage Aszesiment | = ID!E[
Results of weapons fire;
Carrier? damaged, current Staving Power: 2 Time: 38.680° Emg% |

Figure 24. BDA Report: Damage
Sialx]

Results of weapons fire!
undarmaged (gither target miss or not damaged by missile), beter luck nexttime. Emg% |

Figure 25. BDA Report: Undamaged

41

'B attle D amage Aszessment = IEIIE[

Results of weapons fire!
Fenalty forweapar out of range, weapon firéd butno damage Qlﬂse:
Figure 26. BDA Report: Weapon Out of Range Penalty
Battle Damage Assessmenl = IEI!E[

Results of weapons fire:
Paralty for 26t Inventary, noweapans fire or damage. Gieee |

Figure 27. BDA Report: Zero Inventory Penalty

2. Unrep Orders Panel

The Unrep Orders Panel (Figure 28) enables the player to place unrep requests
and to review details about pending underway replenishment orders. In this version of
the Operational Logistics Wargame, destruction of the CLF ship does not disable the
unrep request panel; but, the panel is useless. The right side of the panel contains a list of
all existing ships in the Battle Group, less CLF ships. The player may place an unrep
request for any of the ships shown by clicking on the appropriate radio button. The left
side of the panel lists all pending underway replenishment requests. The requests are
grouped by supply class: fuel, weapons, or stores. With each class, the requests are
listed in First-in, First-out (FIFO) order by priority. The player may review the details of
a specific order by clicking on the appropriate radio button. More details on these

options are provided below.

42

[Unrep Orders

ol

Ot teiioy iha i irs 2 rrn0| bEachsieTtho et Seleot the ship for vhich you would like to order
URGENT orders first]. Select an order for more AL T
information.

~Fuel Orders

" Gearge Washington
© Cole, Fuel

" Genrge Washingtan, Fuel
™ Bunker Hill

“YWeapons Orders

Actual d_isplay may be different

" Ruehen James, Weapons
€ Micholson

" Micholson, ¥Weapons

Gtores Orders Cole

" Micholson, Stores

" Rueben James

Dang

Figure 28. Unrep Orders Panel

a. Place an Order

After clicking a specific ship’s button on the Unrep orders panel to order
supplies and weapons, the Placing an Unrep request panel is generated (Figure 29). This
panel contains a slider for all fuel, weapons, and stores onboard the specified ship
provided the item is available via underway replenishment. Harpoon and Tomahawk are
not shown because they are not replenished at sea. The maximum value of each item’s
slider is the maximum capacity on the ship. The sliders for weapons show both capacity
by weight and number of units, as previously discussed. The player orders a specific
item by moving the slider to the desired amount. After selecting all items to be ordered,
the player should select a priority for the order (urgent or routine). Use of urgent priority
incurs a penalty. Once all items are selected, click the Place the Order button. Any item
with an amount of zero is not ordered. If all sliders are set to zero when the Place the
Order button is clicked, no order will be recorded. The player may use the Exit icon to

exit the screen without terminating the game.

43

Figure 29. Placing an UNREP request Panel

44

b. The Unrep Schedule

At frequent intervals throughout the wargame, the unrep schedule is
reviewed and modified as necessary. When under review, the request list is compared to
a clone of the CLF ship’s onboard inventory for that commodity. If the inventory clone
has the inventory to fill the first order, that order is scheduled to be filled, and the clone is
decremented by the first order’s total amount. These steps are repeated until an order
amount is greater than the remaining value of the clone. At that point the order under
review is scheduled to remain unfilled and all the
following orders on the list are also scheduled to remain unfilled.

During an underway replenishment, the schedule is checked for all orders by that
ship. Any orders scheduled to be filled are honored and the CLF inventory is reduced by
the amount of the request. The CLF inventory is always reduced by the amount of the
request, regardless of the actual amount onboard the ship. Additionally, if any orders are
denied during an unrep because it is not scheduled to be filled, the player is accessed a
penalty. So, the player should take care when placing orders since the amount ordered
determines the scheduling of unrep requests and reduces the CLF inventory without
noticeable advantage to the player.

Once a request has been honored, the request is removed from the summary of
unrep requests. If a ship is destroyed, all of the ship’s requests are removed from the
summary. Ifa ship makes a port visit, all of the ship’s requests are removed from the

summary.

45

c Check an Order

When the player selects a radio button on the outstanding unrep requests
part of the Unrep Orders panel, a summary of the indicated order is displayed.
Information displayed includes the total weight (or barrels, for fuel) of all desired items,
the specific weight of each item, and the status of the request. The status of the request
notes whether or not an unrep request will be honored during the next underway
replenishment for that ship. Figure 30’s order is scheduled to be filled during the ship’s

next underway replenishment while Figure 31°s order is not.

@'Selecled order: Rueben Jamss, Stotes
fitems listed inno srandard order)
{blxls 1f fuel, weighr otherwise)
idScheduled @ true

ey FProvisions : 4065

Frogen Goods @ 1760

Goores Order Toral @ 26773

Fresh Produte : 1443

Basic Class I : 18501

=10]x

Figure 30. Sample Selected Order, Scheduled

%‘Selecled order; Bunker Hill, Fuel |
{items listed inno srandard order)
{bbls 1f fuel, weight otherwise)
igScheduled : falsze

Fuel Order Totsl & 1E2500

Fad4 @ 500

F76 : 12000

Figure 31. Sample Selected Order, Unscheduled

46

3. Change Coordinates Panels

The Change Coordinates panels are very similar to the Course and Speed panels
seen at the beginning of the game; however, there are notable differences. The player
may exit from any of these panels at any point without terminating the game. The first
two panels of this section are similar as the original panels(Figure 32 and Figure 33). An

output panel also displays the results of course selection (not shown).

Ega[:oulse and Speed I 10l =l

To set additional waypoints (or completely new
courses) for your Battle Group, you nay set a
course for the entire CVBG, or for only a select
group of ships with individually assigned courses
for the remaining ships.

Pleaszse select which ships, if any, you would
like to assign a group course. Then click the
START BUTTON.

"] Bunker Hill
[Micholson
[Cole

[Rueben James

[~ Supply

START |

Figure 32. Change Coordinates Course and Speed Panel

47

Wi Conseand spweds =10jx]

Selectihe aroup speed i ks

| sotrimation Show | #juritind Pani |[& Group Coune . | &M B ALY 512

TR

| &) sonchBrat | Jss

Figure 33. Change CoordinatesGroup Course and Speeds Panel. After Ref. National
Geographic.

After the group setting panels have been completed, another Course and Speed
ship selection panel displays (Figure 34). This panel displays the names of the ships that
were not selected to sail as a group. The player may select which ships to set course and
speed for individually by clicking the appropriate check boxes. Click Start after ship
selection. If the player does not desire to set any individual course and speeds, the player
can click Start or the Exit icon. The last panel of this section is similar to the original
panels (Figure 35). The speed slider for the individual ships is set to the ship’s current
speed. If the player does not desire to change the ship’s speed, the slider bar should not

be moved. The new coordinates are printed to an output panel (not shown).

48

E;a Course and Speed =10] x|

Now select ths ships that you would like to assign
additional (or new] waypoints individually. You
way select all, none, or sSome. Then click the
START EUTTON.

i
[Cole
[Rueben James

[supply

START

Figure 34. Change Coordinates Course and Speed Unit Selection Panel

[Course and Speeds for individual ships i - [o x|
iy

new speed (Default is current speed) far USS I
StarUreset coordinates: Supply Set & Print coords: Supply Cliok i button when ready to procesd

Figure 35. Change Coordinates Unit Course and Speed Panel. After Ref. National
Geographic.

49

4. Add Coordinates Panel

The Add Coordinates selection of the Select Actions panel results in the same
GUT’s being produced that are produced for the Change Coordinates panel. (Figure 32
thru Figure 35) The only difference between the Change Coordinates action and the Add
Coordinates action is that Change Coordinates replaces the indicated ship’s existing
scheduled Course and Speed track with the new list of waypoints. The Add Coordinates
action adds the new list of waypoints to the end of the existing scheduled Course and
Speed track.

S. Save and Exit

This option is not functional in the current version of the Operational Logistics

Wargame.

L. OTHER TOPICS

1. Bonus and Penalty Points

Bonus or penalty points are accrued for a variety of reasons throughout the
Operational Logistics Wargame. Since the goal of this wargame is to increase the
student’s understanding of Operational Logistics, logistics actions are weighted more
heavily than combat actions. To calculate inventory bonus and penalty points, the
wargame tracks the inventory on a daily basis and awards points accordingly for daily
inventory status. Bonus points increase the total score and penalty points decrease the

total score. The current point values assigned to relevant actions are shown in Table 12.

50

Action When calculated Bonus [Penalty
Value |Value
Damage to a ship during an attack on event 1
Destruction of a ship on event 5
Port visit by any non-CLF ship on event 1
Zero inventory of specific logistic item daily, per ship 5
Zero inventory of specific weapon daily, per ship 5
>0 & <=40% onboard of specific logistic item daily, per ship 1
> (0 & <=40% onboard of specific weapon daily, per ship 1
>=40% & < 50% onboard of specific logistic item daily, per ship 0 0
>=40% & < 50% onboard of specific weapon daily, per ship 0 0
>= 50% onboard of specific logistic item daily, per ship 1
>= 50% onboard of specific logistic item daily, per ship 1
Use of Urgent priority for an unrep request on event 20
Attempting unrep that is denied on event, per supply 1
class
Delaying deployment to replenish inport on event 1
Trying to fire a weapon with zero inventory on event 25
Firing a weapon not in range of target on event 5
Zero inventory of Point Defense weapon in attack on event 1
Destruction of Surface Threat on event 5
Destruction of Air Threat on event
Destruction of Enemy Base on event 10
Damage to Surface Threat on event 1
Damage to Enemy Base on event 1

Table 12. Bonus and Penalty Point Values

2. Surface Threats and Air Threats

Surface Threats and Air Threats are randomly generated throughout the wargame.
The threat generation processes use random number generators to determine the length of
time between threat initializations. Each surface threat and air threat is assigned a unique
identification tag when it is generated. The identification tag indicates what class of
threat it is and the time that the asset was generated. Damage to a specific threat asset

does not affect any other threat asset, including assets of the same class. The current
51

version of the Operational Logistics Wargame allows generation of surface threats and air
threats for the duration of the simulation run, regardless of how many threat assets are
damaged or destroyed. Threat assets always fire weapons when detecting Battle Group
assets. Threat assets do not have a specific fire power but fire only once per Battle Group

target per detection.

3. Scheduling Port Visits and Underway Replenishments

The current version of the Operational Logistics Wargame does not have a
method to specifically schedule a port visit or underway replenishment. To make a port
visit, the player should generate a waypoint near the desired port for the desired ship(s) in
the Change Coordinates or Add Coordinates panel. To schedule an underway
replenishment, the CLF ship and the desired recipients should be scheduled to sail along

several waypoints as a group using the Change Coordinates panel.

52

IV. REFEREE MANUAL

By using an external database for configuration, the Operational Logistics
Wargame structure allows the referee considerable control over the wargame. With basic
knowledge of the Java programming language, the referee has control over virtually
every aspect of game play.

A. DATABASE CONTROL

The referee may assign specific ships to the wargame’s fleet by making changes
as desired to the “CVBG” table. Such changes may include increasing or decreasing the
size of the Battle Group or the addition of shuttle ships to the fleet. The default CVBG
table has only a single CLF ship which performs the role of both a station ship and a
shuttle ship. The CVBG table also includes the starting position of the assigned ships.
Other tables in the database are also easily modified to change details such as ship
logistic capacities, logistics items, weapon capacities, and sensor data. The referee
should take care to ensure that any changes made to the database retain compliance with
JAVA and SQL programming rules and that changes are made throughout the database.
For example, changes to a specific weapon’s name should be made in both the
“TypeWeapons” table and the “Weapons” table. See the Methodology Chapter for more
information on the database design. Each ship in the Battle Group is assigned a Staying
Power value. For this wargame, this value depends not only upon a realistic staying
power for that type of ship but also the defensive value (i.e. whether or not the ship has
defensive weapons).

B. JAVA CODE CONTROL

With minimal knowledge of the JAVA programming language, the referee may
also make changes to numerous other parameters of the game.

1. Maps, Bases, and Coordinate System

Any appropriate jpeg file may be used as the background map provided it is
renamed to match that noted in specific JAVA classes. However, some coordinates are
hardwired into the program and are based on the default jpeg file’s geography.

Therefore, if the background map is changed, those coordinates may require modification

53

too. Note that the coordinate system of the game is that used by JAVA. The top left
corner of the map is the origin with horizontal positions (x) increasing to the right and
vertical positions (y) increasing downward. (Use of the JAVA coordinate system
prompted the drastic decrease in range of Tomahawk.)

If the map is changed, coordinates which may need modification include the
Battle Group’s starting position, which is found in the oplog database, friendly and threat
port positions, threat base positions, threat surface ship tracks, and threat air tracks. Port
and base coordinates, as well as the number and names of them, are specifically assigned
within the Java code. The code used for port and base parameters can be easily modified
with additions or deletions or can be modified to draw from an outside source such as
another database table which would make it easier to modify the data. Both threat
surface and threat air tracks are randomly selected from a group of predetermined tracks
that are coded directly into specific JAVA classes. These classes can also be easily
modified directly or modified to draw from an outside source.

2. Penalty and Bonus Points

Penalty and Bonus points are accrued on various occasions during game play.
Point increments range from 1 to 25 points, depending upon the event for which the
bonus or penalty is being awarded. The default amount for bonus and penalty awards is
one point. A second method for each type of award allows the code writer to specify how
many points are to be awarded. The referee can change, or eliminate these values
wherever desired. See the Student Manual for a specific list of currently assigned bonus
and penalty point values. Penalty and bonus points are changed by making the desired
changes directly in the applicable Java class.

3. Random Variables

If desired, the referee can change the mean interarrival time of air and surface
threats and the mean detection time of each sensor. The referee can also change the
probability of hit and probability of kill rates for both Battle Group and threat attacks, as
well as the logistics and weapons status determinations at the beginning of the wargame.
The referee has control over the type of random number generated for any random

number generation.

54

4. Other Variables

Interspersed throughout the JAVA code are numerous variables that are easily
changed by the referee. These variables include:

- Threat sensor range,

- CLF sensor range,

- Friendly base sensor range,

- Air threat speed,

- Enemy base Staying Power,

- Air threat Staying Power,

- Surface threat Staying Power,

- Total number of enemy weapons,

- Maximum number of air threats at any given time,

- Maximum number of surface threats,

- Maximum number of days to run the wargame.

C. MISCELLANEOUS CONTROL

The speed at which the simulation runs can be controlled by the Referee.
Additionally, the frequency of screen refresh updates can be controlled by the Referee.
The wargame intelligence scenario and summary of game rules are simple Strings of text
that can be modified at any point. In future versions of the Operational Logistics
Wargame, the intelligence scenario and summary of game rules are designed to be simple

text files that may be modified at the referee’s discretion.

55

THIS PAGE INTENTIONALLY LEFT BLANK

56

V. CONCLUSIONS AND RECOMMENDATIONS

The Operational Logistics Wargame is a combat model with a solid Operations
Research foundation. It is specifically designed for Operational Logistics students. It
will help the Naval Postgraduate School meet the continuing goal of training Logistics
Officers to make effective decisions in combat situations. The wargame has numerous
advantages over existing combat models, particularly PRO-LOG that make it ideally
suited to meet the needs of its users. The major advantages are discussed below. Also, it
is recognized that to best meets the needs of the Operational Logistics curriculum,
building this wargame will span the work of several theses. To that end, key
recommended enhancements are discussed in this chapter. Additional notes on

enhancements can be found in Appendix B.

A. ADVANTAGES

1. Flexible

This wargame is expandable and configurable. The Carrier Battle Group along
with its supply and weapons lists can be tailored in size by simple changes to the
accompanying database. Other aspects of combat can be added to the wargame without
changing the basic model. The scenario, including the geographic region can be
modified at will. PRO-LOG was neither expandable nor configurable. PRO-LOG had a
single scenario.

2. Modern

The Operational Logistics Wargame uses the most up-to-date modeling and
simulation techniques. The graphical user interfaces provide a modern, intuitive,
windows-based environment in which to run the wargame. The wargame’s predecessor
was a deterministic, text-based model.

3. User-Friendly

Detailed graphical displays throughout the game give players immediate feedback
on their progress. Players have direct control over their units for both logistical and

combat aspects of the game.

57

4. Quick Starter

Training time to use this wargame is minimal and is commensurate with the
classroom time devoted to the subject.

5. Portable

The Operational Logistics Wargame can be installed on individual personal

computers or laptops and can be run on all major operating systems.

B. RECOMMENDED ENHANCEMENTS

1. State Variable Statistics

The simulation model makes extensive use of firePropertyChange() methods to
indicate that certain variables have changed. Examples of these variables include arrivals
of enemy aircraft, detection of surface threats, underway replenishments, and port visits
by Battle Group assets. Statistical data can be collected about these variables with
accompanying statistical analysis performed. Code should be added to collect these
simulation data with subsequent analysis done and reported to the player.

2. Logistics and Weapons Inventory Statistics

Data on instantaneous logistics and weapons inventory levels is calculated and
reported throughout the simulation. Code should be added to monitor these levels for
later analysis. One possible approach would be to use firePropertyChange() methods to
report inventory levels whenever the inventory levels are calculated for a particular
simulation time. Although consumption of logistics items is continuous, consumption is
only calculated whenever the game is paused. Due to the Discrete Event Simulation
nature of the Operational Logistics Wargame, the pauses are not periodic and thus the
statistics reported on the inventory levels would not be periodic either. This complicates
collection and reporting of simulation-wide statistics on logistics and weapons inventory
levels. This area requires additional research.

3. Other Game Play Statistics

In other areas of game play such as combat, results of the wargame or score
categories should be tracked. Relevant data such as number of enemy targets damaged or

destroyed, number of weapons fire ‘misses’ due to zero inventory, and number of Battle

58

Group assets damaged, repaired, and destroyed should be available for analysis.
Additionally, statistics on how the score of the game was reached should be gathered and
reported.

4. Cookie Cutter Sensors

Underway replenishments are conducted when ships are within a certain range of
the CLF ship. The sensor used to detect and subsequently schedule underway
replenishment events is the same constant rate sensor used by all assets. Since the
detection is based on a random number generator, this can result in the occasional non-
detection of the combatant ship by the CLF ship and the resulting failure to conduct
underway replenishment. The CLF sensor on the station ship should be a Cookie Cutter
Sensor that always detects its target rather than the constant rate sensor. Addition of a
CookieCutterSensor and its Mediator as well as modifications to the
ConstantRateMediator, ConstantRateSensor, and Referee instantiations are among the
changes that will be necessary to refine this feature.

S. Enhancing Realism

The Operational Logistics Wargame includes stochastic methods in certain areas
of game play such as Surface Threat generation, Air Threat generation, damage and
destruction calculations, and sensor detections. However, the game could be enhanced
by adding more random events. For example, if a ship is damaged during an attack, a
requirement for specific repair parts (by weight) could be randomly generated. Or, a
storage tank/room might be destroyed which would reduce the ship’s capacity until
repaired inport. Or, unordered logistics items, such as seasonal foul-weather coats for the
whole crew, might be added to a ship’s unrep request at the time of delivery which would
increase the amount of stores received. These events would serve to confound the unrep
request process in the wargame and make it more closely reflect reality.

6. Hardwired Data

a. Instance Variables
In the program code, there are many instance variables that have their

values hardwired into the code. These variables range from the number of days to run the

simulation to the range of the CLF sensor. These variables, more properly, should refer

59

to JAVA properties files to get their values. Program code throughout should be
modified accordingly.

b. Friendly and Enemy Bases

Both Friendly and Enemy Base data are written directly into applicable
JAVA classes. As is other Friendly and Enemy force data, this data should be retrieved
from an outside database. The classes should be modified to obtain the data from an
outside source.

c. Threat Air and Threat Surface Movement

Threat Air and Threat Surface movements are based on preset coordinates.
Although each path is randomly selected, there are only a set number of paths to choose
from. These choices are “hardwired” into applicable classes. First, these paths should be
obtained from an outside source with the code modified accordingly. Second, more paths
should be added. Third, when methods have been implemented to differentiate between
land and water, Threat Air and Threat Surface movement should become more random

with some sort of random path generator.

C. CONCLUSION

The Operational Logistics Wargame as presented by this thesis is a functional tool
for use in introductory coursework of the Operational Logistics Curriculum at the Naval
Postgraduate School. It presents a combat logistics system complex enough to challenge
the intended audience along with a player-friendly data presentation; this wargame is
ready for immediate use. The flexible design provides a solid basis for future expansion
or other modification. And, the use of Java, a modern program language, ensures that

this tool can be easily maintained.

60

APPENDIX A . THE OPLOG PACKAGE

This appendix contains detailed information on each class written for this
simulation. All classes are contained in the package oplog or in subpackages such as
oplog.database for databases and related classes, oplog.gui for classes used to make
graphical user interfaces, and oplog.smd for classes used by the discrete event simulation.
Classes not discussed in the appendix are drawn from java, javax, and simkit packages.
The details noted here about each class are considerably more in depth than those found
in the Javadocs. All program code and applicable Javadocs are included in some
electronic versions of this thesis. Some classes that are not used in the current version of
the Operational Logistics Wargame have also been included in those versions as a basis

for future development.

1. OPLOG.DATABASE CLASSES

Classes in the oplog.database package are those classes of the Operational
Logistics Wargame whose main purpose is to interact with external databases. These
classes generally retrieve database information and return the data to the instantiating
class.

a. DataBaselnfo.java

The DataBaselnfo Class contains the database information methods that retrieve
specific data from the Oplog.mdb database. Performs look up of ships and ship classes
from the CVBG (Carrier Battle Group) Table. Uses that information to look up data in
other tables.

b. DataRepository.java

The DataRepository Class has two primary functions. Its first function is as a go-
between for the IntelSummary class and whatever follows. In the current version of the
Operational Logistics Wargame, the DataRepository is created by IntelSummary and
receives information created by IntelSummary. The Constructor requires information on
the game option the player has chosen in the form of an integer. The Constructor also
calls for 7 vectors of information gathered in the IntelSummary instance that instantiated

the DataRepository. Based on the information received, the DataRepository then
61

implements one of two options for continuing the wargame. The second function of this
class is to store information about weapons and logistics of the fleet during the entire
wargame. This class also provides storage for information about the CLF ship and
underway replenishment requests. It contains methods to update unrep requests and CLF
inventories. The DataRepository provides methods for adding bonus or penalty points to
the accumulated score and maintains the accumulated score.

c. LogRates.java

The LogRates Class is a database intermediary that gets the logistics consumption
rates and storage requirements. The Constructor requires input of two Vectors. The first
is a Vector of ShipHashMaps. Each ShipHashMap contains the ship names, ship classes,
and ship capacity for all logistical items of the named ship. The elements of the second
Vector are the fleet’s logistic items as Strings. A Vector of basic logisitics capacities is
used rather than the current logistics status of each ship since consumption rates are
added to the input ShipHashMap and the updated version is returned upon request. This
version adds a rate key and storage key to each ship for each logistical item.

d. ThreatDataGetter.java

The ThreatDataGetter is the interface between the Operational Logistics
Wargame and the Threat.mdb database. It has functionality similar to that of the
DataBaselnfo class and retrieves information for use by Surface Threats.

e. WeaponsData.java

The WeaponsData Class is an intermediary that gets additional information about
weapons from the database. The Constructor requires input of two Vectors. The first
Vector is a Vector of ShipHashMaps. Each ShipHashMap should contain the ship
names, ship classes, and ship capacity for all weapons of the named ship. The elements
of the second Vector are the fleet’s weapons in String form. A Vector of basic weapons
capacities is used rather than the current weapons status of each ship since static
information is added to the input ShipHashMap and the updated version is returned upon
request. This version adds a Weight key, Purpose key, and Range key for each weapon
to each ShipHashMap.

62

2. OPLOG.GRAPHICS CLASSES

Classes in the oplog.graphics package provide generic graphics services to the
Operational Logistics Wargame. These classes do not provide any information to the
player concerning the logistical or combat status of the wargame.

a. Animate.java

Animate is the animation class of the Operational Logistics Wargame Simulation.
This Class extends JFrame and implements SimEventListener. The Constructor requires
a Vector whose elements are the Battle Group’s ship names as Strings and reference to
the current instantiations of LogStatus, WeaponsStatus & DataRepository. The
Animation methods are borrowed from the AnimationTest Class written by Professor A.
Buss. The Animation Frame has three main areas. The first is an animation screen
display of the current Ships, Surface Threats, Air Threats, Friendly Bases and Enemy
Bases superimposed on a backgound map. Only Air and Surface Threats that are
currently detected by Battle Group assets are displayed. The second feature is a panel
displaying various simulation data. The third feature is a control panel for pausing,
resuming, and exiting the simulation.

b. ControlPanel.java

The ControlPanel class extends JPanel. It is a modified version of Professor
Arnold Buss's PingerPanel class. The Control Panel generated by ControlPanel contains
the buttons to restart, stop, and exit the wargame. The Constructor requires reference to
the current instantiation of the Object that it will be acting upon. In the current version of
the Operational Logistics Wargame, this panel is one of the three main elements of the
animation screen and is instantiated in the Animate constructor.

c. Pinger.java

The Pinger class extends SimEntityBase and implements Runnable. It is
borrowed directly from PingThread2.java by Professor Arnold Buss. The Constructor
requires doubles representing the time between ping events and number of realtime
milliseconds per Simulation Time. The Constructor also requires a Boolean representing

the desired status of the pinger.

63

d. SimTimePanel.java
The SimTimePanel class extends JPanel. It is a component of the actions tab of
the animation window. It displays the simulation time and is updated to reflect the

current simulation time whenever the game is automatically paused.

3. OPLOG.GUI CLASSES

The oplog.gui package contains classes that provide information to the player in
the form of Graphical User Interface displays. All information concerning both the
logistical and combat progress of the game is presented by these classes.

a. AfterWelcome.java

The AfterWelcome Class is a go-between for the OplogWelcome Class and the
IntelSummary Class. It is instantiated by OplogWelcome and reacts to the selection of
the specific buttons from the OplogWelcome Class. The Constructor requires an integer
representing which button was chosen. This class enables the wargame structure to be
easily modified once the Resume feature is available by adding more specific button
actions without modification to the OplogWelcome or IntelSummary Classes. This Class
instantiates a PleaseWaitPanel and the IntelSummary Classes. The IntelSummary Class
is instantiated within a SwingWorker Class to allow the PleaseWaitPanel to display
properly.

b. CasGroupSetter.java

The CasGroupSetter Class extends JPanel and implements MouseListener. It is a
GUI for the Operational Logistics Wargame. The Constructor requires Vectors of Strings
representing ships in the Battle Group and ships sailing individually as well as reference
to the current instantiation of the DataRepository. This GUI allows the player to set the
course and speed for the Battle Group. It generates a frame containing a map

background, a speed slider, and three option buttons.

64

c. CASListener.java

The CASListener Class implements ItemListener. The Constructor requires the
name of the ship that it is representing in String form. It provides Listeners for the
CheckBoxes in the Course and Speed, the MoreCourseAndSpeed and
MoreCourseAndSpeedUnits Classes.

d. CasUnitSetter.java

The CasUnitSetter Class extends JPanel and implements MouseListener. Itis a
GUI for the Operational Logistics Wargame. The Constructor requires a Vector of
Strings representing the ships that will sail individually and reference to the current
instantiation of DataRepository. The CasUnitSetter Class allows the player to set course
and speed for individual ships of the CVBG. It displays a frame containing a map
background with a separate tab for each ship containing a speed slider, and three option
buttons.

e. CourseAndSpeed.java

The CourseAndSpeed Class extends JPanel. It is a GUI for the Operational
Logistics Wargame that allows the player to decide how to set the Course and Speed for
the CVBG. The Constructor requires reference to the current DataRepository. This class
is instantiated by the DataRepository Class.

f. FireResultsPanel.java

The FireResultsPanel extends JPanel. It is a GUI for the Operational Logistics
Wargame. This GUI provides Battle Damage Assessment of targets in text format. This
class is instantiated by the FireWeaponsPanel Class and its Constructor requires a String
representing the results of weapons firing.

g. FireWeaponsPanel.java

The FireWeaponsPanel extends JPanel. It generates a GUI for the Operational
Logistics Wargame. This GUI allows the player to fire weapons at known threats. It
uses a uniform random number generator to determine if the threat is damaged or
destroyed. The probability of hit and probability of kill rates are slightly higher against
threats than threat attacks against Battle Group assets due to technology differences and
weapons limitations for Battle Group assets. The Constructor requires a Vector of

existing wargame Ships, a Vector of current wargame Threat assets and EnemyBases,
65

and reference to the current DataRepository. This Class is instantiated by the
SelectActionsPanel.

h. IntelSummary.java

The IntelSummary Class extends JFrame. It generates a GUI for the Operational
Logistics Wargame. The GUI provides opening scenario information. This information
includes an intelligence summary as well as the Carrier Battle Group composition and
logistical status. This class uses a uniform random variate to determine fuel, weapons,
and stores onboard each ship at the start of the wargame. Each ship has 75-100% of its
capacity for each item onboard with the inventory level of each determined
independently.

i. LogProgressBar.java

The LogProgressBar Class extends JProgressBar. It is a ProgressBar specialized
for the Operational Logistics Wargame Intelligence Summary. It is used to display
percentage on board versus total capacity of the indicated logistics item or weapon. The
Constructor requires a String representation of the maximum capacity and an integer
representing the current inventory value.

i MoreCasGroupSetter.java

The MoreCasGroupSetter Class extends JPanel and implements MouseListener.
Based on the CasGroupSetter Class, it also allows the player to set the Course and Speed
for the CVBG. The Constructor calls for input of two Vectors and one Boolean. The
first Vector contains a list of ships, presented as Ship vice ShipHashMaps, that will have
course and speed set by the MoreCasGroupSetter instantiation. The second Vector
contains a list of ships to be sent on to the MoreCourseAndSpeedUnits Class. This class
instantiates the MoreCourseAndSpeedUnits Class if the indicated Vector is not empty.
Otherwise, this class adds new coordinates to a Ship’s path or makes a new path for the
Ship as indicated by the input Boolean.

k. MoreCasUnitSetter.java

The MoreCasUnitSetter Class extends JPanel and implements MouseListener. It
allows the player to set additional Coordinates for individual ships in the CVBG. The
Constructor calls for input of a Vector and a Boolean. The Vector contains a list of ships,

presented as Ship vice ShipHashMaps, that will have course and speed set by this Class.
66

This class adds new coordinates to a Ship’s path or makes a new path for the Ship as
indicated by the input Boolean.

L. MoreCourseAndSpeed.java

The MoreCourseAndSpeed Class extends JPanel. This GUI allows the player to
select which ships to set a group course and speed for. The Constructor requires a Vector
of Ships and a Boolean. The Vector of Ships is used to construct a list of ships that can
have course and speed set. Ships chosen to be in the group added to the group Vector
and others are added to the units Vector. If any Ships are in the group Vector, the
MoreCasGroupSetter Class is instantiated and is passed both Vectors and the Boolean. If
the group Vector is empty, this Class instantiates a MoreCasUnitSetter Class and passes
the MoreCasUnitSetter the new unit Vector of Ships and the Boolean received by the
Constructor.

m. MoreCourseAndSpeedUnits.java

The MoreCourseAndSpeedUnits Class extends JPanel. It allows the player to
select which ships to set individual course and speed for. The Constructor requires a
Vector of Ships and a Boolean. The Vector of Ships is used to construct a list of ships
that did not have course and speed set by the instantiating MoreCasGroupSetter Class. If
any ships are chosen for individual course and speed additions, a new Vector of ships is
created and this Class instantiates a MoreCasUnitSetter Class This class passes the
MoreCasUnitSetter the new Vector of Ships and the Boolean received by the
Constructor.

n. OplogWelcome.java

The OplogWelcome Class is the opening GUI for the Operational Logistics
Wargame. It has no real function other than to start the wargame and contains the main
method of the wargame. The code used in this Class to generate panels is organized
differently, and is perhaps, more clumsy than code used to generate panels later in the
wargame. This class intantiates the AfterWelcome Class.

0. PleaseWaitPanel.java

The PleaseWaitPanel extends JPanel and generates a simple text frame to provide
information to the player. This GUI tells the player that the wargame is running correctly

and loading data from the database. This Class is instantiated whenever necessary. The
67

current version of the Operational Logistics Wargame instantiates this Class in the
AfterWelcome, CasGroupSetter and CasUnitSetter classes.

p. SelectActionsListener.java

The SelectActionsListener Class implements ItemListener. It provides Listeners
for the CheckBoxes in the Select Actions GUI of the Operational Logistics Wargame.

q. SelectActionsPanel.java

The SelectActionsPanel extends JPanel. This GUI generates a Radio Button
Group that offers the player several choices of actions that may be taken when the game
is paused. The Constructor calls for a Vector of the existing Ships.

r. SliderListener

The SliderListener Class is an implementation of ChangeListener. This listener
tracks changes to a speed slider from various Course and Speed setting GUIs.
Constructor requires input of the ship’s name and a default speed. When used by the
MoreCASUnitSetter Class, the default speed is the ship’s current speed. Otherwise, the
speed is usually the maximum speed.

S. SwingWorker.java

The SwingWorker Class is a Class for the Operational Logistics Wargame. It
provides simple thread capabilities for various sections of the wargame. In the current
version of the Operational Logistics Wargame, SwingWorker is instantiated when
needed. It is copied directly from the JFC Swing Tutorial: A Guide to Constructing

GUIs. Other information about this class is provided from the original document:

This is the 3rd version of SwingWorker (also known as SwingWorker 3), an
abstract class that you subclass to perform GUI-related work in a dedicated thread
... Note that the API changed slightly in the 3rd version: You must now invoke
start() on the SwingWorker after creating it.

t. TheLogPanel.java

The LogPanel Class extends JPanel. It generates a panel for the animation frame
of the Operational Logistics Wargame Simulation. This frame is used to display a
running log of textual information concerning the game status. This panel is updated

whenever the game is paused automatically. The Animate Class instantiates this Class.
68

4. OPLOG.LOG CLASSES

The oplog.log classes contain the methods for consuming, replenishing, and
tracking inventory of logistical items and weapons in the Operational Logistics Wargame.
These classes use information obtained by oplog.database Classes from external sources
or use information stored as instance variables in oplog.database Classes.

a. CheckUnrepSchedule.java

The CheckUnrepSchedule Class is a class that provides additional functionality
for the DataRepository class. The Constructor needs reference to the current
DataRepository and a Ship representation of the ship whose underway replenishment
schedule should be checked. This Class is used by various Classes throughout the
Operational Logistics Wargame to check whether a ship's unrep requests should be filled.
Normally this class is used when the CLF ship detects another ship. If an unrep is
scheduled, the appropriate amount is added to the ship's inventory of that item. If the
new total could be above maximum capacity, new total is changed to maximum capacity.
When a previously scheduled underway replenishment is accomplished, the CLF ship’s
inventory of that item is reduced by the amount ordered. If the unrep was not a
scheduled unrep, no action is taken.

b. CLFPanel.java

The CLFPanel Class extends JPanel. A Vector representation of the CLF ship’s
capacity is required by the Constructor. It calculates and displays inventory levels of the
CLF ship for each broad class of supply at the beginning of game play. This class uses a
uniform random variate to determine fuel, weapons, and stores inventory onboard the
CLF ship at the start of the wargame. The starting inventory is 75-100% of the
maximum capacity onboard with the inventory level of each determined independently.

c. CLFStatus.java

The CLFStatus Class extends JPanel. It retrieves and displays inventory levels of
the CLF ship for each broad class of supply throughout game play. This Class uses the
same basic code as that of the CLFPanel Class but reports current inventory levels rather
than generating random amounts. The Constructor requires reference to the current

DataRepository.

69

d. DeleteUnrepRequest.java

The DeleteUnrepRequest Class is a class that provides additional functionality for
the DataRepository Class. It is used to delete all of a specific ships's orders from all
unrep request lists. This Class is normally used only when a ship has been destroyed or
when a ship makes a port visit. The Constructor requires reference to the current
DataRepository and the indicated ship.

e. LogStatus.java

The LogStatus Class is the workhorse for logistics in the Operational Logistics
Wargame. It calculates consumption of logistical items. Also calculates penalties or
bonus points for daily inventory status. Penalties and bonuses are only calculated and
charged every 24 hours. This Class provides a method to replenish all logistical items for
a ship when a port visit is made by that ship. In calculating consumption, it uses
consumption rates obtained from the Oplog database. The Constructor requires reference
to the current DataRepository.

f. OrderListener.java

The OrderListener Class implements ChangeListener. It is a listener for the
Operational Logistics Wargame. This listener tracks changes to its order slider from the
Ship Order Panel. Constructor requires input of a default order amount.

g. PlacedRASRequestsPanel.java

The PlacedRASRequestsPanel Class extends JPanel. A GUI for the Operational
Logistics Wargame, it displays all current Unrep requests. Each is displayed with a radio
button. If the player selects a specific Unrep request, a ShowOrderPanel for that order is
instantiated. The Constructor requires reference to the current DataRepository.

h. ScorePanel.java

The ScorePanel Class extends JPanel. Drawing information from the current
instantiation of the DataRepository Class, it displays the current score of wargame.

i. ShipRASRequestsPanel.java

The ShipRASRequestsPanel Class extends JPanel. It generates a Panel used to
request specifc items during the next Unrep between the indicated ship and the CLF ship.
All fuel, stores, and weapons available via Unrep are displayed on individual sliders.

(Tomahawk and Harpoon are not available via Unrep.) Maximum value of each slider is
70

the ship's capacity for that item. The player may set routine or urgent priority for the
order. The default priority is routine. If urgent priority is selected, a penalty is accessed.
The Constructor requires the name of the specified ship in String form and reference to
the current DataRepository.

je ShowOrderPanel.java

The ShowOrderPanel Class extends JPanel. It generates a panel that displays all
pertinent information about the selected Unrep request such as amount and types of
stores, fuel, or weapons ordered; whether the Unrep is currently scheduled to be filled,
and the total amount of the order. Due to the use of the HashTable Class, the information
does not appear in any particular order. The Constructor requires reference to the
indicated order in ShipHashMap form.

k. UnrepScheduler.java

The UnrepScheduler Class provides a method to review all existing unrep
requests and determine which orders should be filled based on priority of each order,
FIFO status, and CLF inventory. Once the requirements to be filled can no longer be
met, no other requests of that category are considered for filling, reqardless of priority.
Fuel, Weapons, and Stores requests are considered independently from each other. This
class should be used to update the Unrep schedule, whenever necessary, including after
any port visit, any new request, or when a ship is destroyed. No partial order filling
occurs. The Constructor requires reference to the current DataRepository.

L. UnrepSummaryPanel.Java

The UnrepSummaryPanel Class extends JPanel. It generates a GUI for the
Operational Logistics Wargame. This GUI allows the player to review previously placed
unrep orders and place additional orders. The Constructor requires a Vector of the
existing Ships and reference to the current DataRepository.

m. WeaponsStatus.java

The WeaponsStatus Class is the workhorse for Weapons Inventory. Similar in
methodology to the LogStatus Class, it tracks consumption of weapon items. The

Constructor requires reference to the current DataRepository.

71

5. OPLOG.SMD CLASSES

The oplog.smd package contains all classes that form the Discrete Event
Simulation portion of the Operational Logistics Wargame.

a. AirBG.java

The AirBG Class extends OplogMover. It is an OplogMover that is specialized to
be a Battle Group Air Asset. It generates a unique tag for each unit that is created so, no
matter how many are created, no two are alike. This Class is not used in the current
version of the Operational Logistics Wargame. The Constructor requires the origin as a
Coordinate and the maximum speed as a double.

b. AirThreat.java

The AirThreat Class extends OplogMover. It is specialized for the Arrival
Process. It generates a unique identifier tag for each AirThreat generated. AirThreats are
instantiated by the AirThreatGenerator Class. The Constructor requires the origin as a
Coordinate and the maximum speed as a double.

c. AirThreatCourseGenerator.java

The AirThreatCourseGenerator extends SimEntityBase. This class contains a
group of predetermined courses for Air Threats. The courses are Vectors of Coordinates.
This Class uses a uniform random number generator to determine which of those courses
will be assigned to a specific AirThreat.

d. AirThreatGenerator.java

The AirThreatGenerator Class extends SimEntityBase. Constructor requires input
of two doubles to use as X and Y coordinates for the unit’s homeport, a double as
maximum speed, a long as the seed for a random number generator, and a reference to the
current wargame’s instance of the Controller. This Class Listens for the Arrival Process
designated for AirThreat Arrivals. Upon notification that an arrival has occurred, the
AirThreatGenerator randomly generates a new AirThreat with a starting position
generated for the unit based on the input homeport parameters and a speed as passed in
the Constructor. The AirThreat’s course is generated by a call to the
AirThreatCourseGenerator. This Class is instantiated in the Deployment Class. This

Class instantiates an AirThreat, an AirThreatCourseGenerator and a PathMoverManager.

72

e. ArrivalProcess.java

The ArrivalProcess Class extends SimEntityBase. This class implements an
arrival process. (See Simulation Modeling and Analysis by Law & Kelton for additional
information on the arrival process.) This Class has a variety of Constructors. The current
version of the Operational Logistics Wargame uses the Constructor that requires a
RandomVariate class name and appropriate parameters the RandomVariate Class. The
Arrival Process is instantiated in the Deployment Class

f. BattleGroupMoverManager.java

The BattleGroupMoverManager extends SimEntityBase. It is a variation of the
PathMoverManager Class and is specialized for use with some OplogMovers of the
Operational Logistics Wargame. It can be used with OplogMovers that have a
ConstantRateSensor. This function of this class is to control movement from one
waypoint to another as provided by the player. This Class listens for EndMoves of the
assigned OplogMover and schedules movement to the next waypoint, as available. If no
additional waypoints are present, provides notification of same. Provides methods to add
additional waypoints to a Vector of Coordinates or to establish a totally new Vector of
Coordinates. When the OplogMover is an instance of the Ship Class, it checks the
current speed of the Ship; otherwise, it uses the default maximum speed. The
Constructor requires the applicable Mover and a Vector of Coordinates. This Class is
instantiated in the Deployment, FriendlyBaseGenerator, and EnemyBaseGenerator
Classes.

g. ConstantRateMediator.java

The ConstantRateMediator extends SimEntityBase and implements Mediator. It
is a Mediator specialized for use with a Constant Rate Sensor. This version does not
contain methods for use with AirBG assets. This class uses a Exponential Variate
generator to determine if and when a ConstantRateSensor detects and undetects a target.
The mean detection time used to generate the Exponential Variate is obtained by a call to
the specific Constant Rate Sensor’s parameters. This Class uses the broad types of
sensors, targets, and mover defined in the current MediatorFactory to refine specific
detection parameters. The Constructor needs the current Sensor and the Mover it is

targeting.
73

h. ConstantRateSensor.java

The ConstantRateSensor Class extends BasicSensor. When used in conjunction
with a ConstantRateMediator, makes detection of targets a stochastic process rather than
a deterministic process. The Constructor requires input of the Sensor’s Mover, the
Sensor’s range, and the mean detection time.

i. Controller.java

The Controller Class extends SimEntityBase and is a centralized control center
for the Operational Logistics Wargame simulation. It provides internal controls over the
animation panel. It listens for arrivals of new SurfaceThreats and AirThreat. Upon
arrival of a new threat asset, the threat is registered with the referee. Additionally the
Controller determines at which point, if any, a threat asset is added to the animation panel
or removed from the animation panel. This Class unregisters obsolete targets, handles
destruction of all friendly and threat assets, and listens for final End Moves of Battle
Group assets. It prompts reporting of specific events to the player and orders automatic
simulation pauses. The Controller Class is instantiated in the Deployment Class. The
Controller Class instantiates the Animate Class. Its Constructor requires input of the
current Referee, a Vector of the current Ships, and references to the current LogStatus,
WeaponsStatus and DataRepository instantiations.

i Deployment.java

The Deployment Class extends SimEntityBase. It is the central class for the
Discrete Event Simulation portion of the Operational Loogistics Wargame. Without the
lead-in GUIs and database retrieval Classes, this would be the Main Method for the
simulation. This class instantiates the ArrivalProcess Classes for SurfaceThreat and
AirThreat Mover generation. It instantiates the EnemyBaseGenerator and
FriendlyBaseGenerator Classes. The CVBG ships are instantiates as Ship Movers in this
Class. The Ships’ Air Sensors and Surface Sensors are instantiated as
ConstantRateSensors. A special CLF sensor, used by the CLF ship to conduct Unreps
when alongside a CVBG ship, is instantiated in the Deployment Class as a
ConstantRateSensor. The Surface Sensors used by FriendlyBases to detect ship port
visits are instantiated in this class. All Classes required to run a Simkit Discrete Event

Simulation are instantiated in this Class including the Referee and
74

ConstantRateMediators (using Mediator Factory). The LogStatus and WeaponsStatus
Classes are instantiated by the Deployment Class. This Class contains code to track
certain statistics gathered during the wargame but the current version of the Operational
Logistics Wargame does not report the final statistical results. The Constructor requires
reference to the current DataRepository.

k. EnemyBase.java

The EnemyBase Class extends OplogMover. It is a Basic Mover specialized for
enemy bases. Current design uses hard-wired data in the EnemyBaseGenerator Class to
assign instance variables. Can be modified to use information drawn from an outside
source. Although this Class is a child of the Mover Class, it doesn't actually move since
it has speed of zero hard-wired. Otherwise, it fulfills all requirements to be a Simkit
Mover. Extending the Basic Mover and Mover Class to this class enables a broad range
of possibilities for interaction with other components of Simkit. The Constructor requires
the origin as a Coordinate and the maximum speed.

I EnemyBaseGenerator.java

The EnemyBaseGenerator Class extends SimEntityBase. The Constructor
requires input of references to the current Operational Logistics Wargame instances of
the Referee and the Controller. This Class is a very basic Mover Generator. It uses
hardwired data to set parameters for its Movers and is only able to generate a
deterministic number of EnemyBases. This Class generates a new EnemyBase for each
set of hardwired data it contains. All EnemyBases have a speed of zero and an origin as
assigned. The current version of the wargame does not assigned sensors to EnemyBases.
This Class is instantiated in the Deployment Class. This Class instantiates a EnemyBases
and a BattleGroupMoverManager for each EnemyBase. It registers the new
EnemyBases as targets.

m. FriendlyBase.java

The FriendlyBase Class extends OplogMover. It is a Basic Mover specialized for
friendly bases. Current design uses hard-wired data in the FriendlyBaseGenerator Class
to assign instance variables. Can be modified to use information drawn from an outside
source. Although this Class is a child of the Mover Class, it doesn't actually move since

it has speed of zero hard-wired. Otherwise, it fulfills all requirements to be a Simkit
75

Mover. Extending the Basic Mover and Mover Class to this class enables a broad range
of possibilities for interaction with other components of Simkit. The Constructor requires
the origin as a Coordinate and the maximum speed.

n. FriendlyBaseGenerator.java

The FriendlyBaseGenerator Class extends SimEntityBase. The Constructor
requires input of references to the current Operational Logistics Wargame instances of
the Referee and the Controller. This Class is a very basic Mover Generator. It uses
hardwired data to set parameters for its Movers and is only able to generate a
deterministic number of FriendlyBases. This Class generates a new FriendlyBase for
each set of hardwired data it contains. All FriendlyBases have a speed of zero and an
origin as assigned. Each FriendlyBase is assigned a ConstantRateSensor. This Class is
instantiated in the Deployment Class. This Class instantiates FriendlyBases, a
BattleGroupMoverManager for each FriendlyBase, and a ConstantRateSensor for each
FriendlyBase. It registers the new FriendlyBases’ ConstantRateSensors as sensors.

0. GenRandomDBTargets.java

The GenRandomDBTargets Class extends SimEntityBase. This Class uses a
stochastic process to determine which data set found in the Threat database should be
assigned to a SurfaceThreat when it is generated. The GenRandomDBTargets
Constructor requires input of two doubles to use as X and Y coordinates for the unit’s
homeport, a long as the seed for a random number generator, and a reference to the
current wargame’s instance of the Controller. This Class Listens for the Arrival Process
designated for SurfaceThreat Arrivals. Upon notification that an arrival has occurred, the
SurfaceThreatGenerator randomly generates a new SurfaceAirThreat with a starting
position generated for the unit based on the input homeport parameters, a ship type as
determined by the database random draw and the ship type’s associated speed. The
SurfaceThreat’s course is generated by a call to the SurfaceThreatCourseGenerator. This
Class is instantiated in the Deployment Class. This Class instantiates a SurfaceThreat, a

SurfaceThreatCourseGenerator and a PathMoverManager.

76

p- OplogMover.java

The OplogMover Class extends BasicMover. It contains methods specialized for
the Operational Logistics Wargame. Methods in this Class are common to all Movers in
the wargame. The Constructor requires the origin as a Coordinate and the maximum
speed.

q. PathMoverManager.java

The PathMoverManager Class extends SimEntityBase. It is specialized for use
with some OplogMovers of the Operational Logistics Wargame. It can be used with
OplogMovers that have a ConstantRateSensor. This function of this class is to control
movement from one waypoint to another as provided by the player. This Class listens for
EndMoves of the assigned OplogMover and schedules movement to the next waypoint,
as available. If no additional waypoints are present, provides notification of same. The
Constructor needs the applicable Mover and a Vector of Coordinates.

r. Ship.java

The Ship Class extends OplogMover. It is a Basic Mover specialized for ships.
Tags each mover with the unique ship's name as found in a database. This class has
methods that are unique to Mover objects representing Battle Group ships. All Movers of
the Class Ship are instantiated in the Deployment Class. The Constructor requires the
ships name and hull type as Strings, its origin as a Coordinate, the maximum and current
speeds as doubles, and the ship’s Staying Power & mission as Strings. Ships are
instantiated in the Deployment Class.

S. SurfaceThreat.java

The Surface Threat Class extends OplogMover. It is specialized for database
surface threats. Tags each SurfaceThreat Mover with a unique tag based on the
SurfaceThreat type and creation time. Can be used with the Arrival Process. The
Constructor requires the ship type as a String, the origin as a Coordinate, and the

maximum speed as a double.

77

t. SurfaceThreatCourseGenerator.java

The SurfaceThreatCourseGenerator extends SimEntityBase. It uses a stochastic
process to determine which of several courses will be assigned to a specific
SurfaceThreat. Randomly selects a Vector of coordinates from a group of predetermined

courses.

6. OPLOG.UTIL CLASSES

Classes in the oplog.util packages are specialized versions of some classes found
in the java.util package.

a. MoverHashMap.java

The MoverHashMap Class extends HashMap. It allows HashMaps to be created
for each Ship or other Mover though an iterative process without hardwiring ship names
into variable names. Thus a new HashMap variable is created for each Ship. Can be
used for any mover including Ships. The Constructor requires reference to the applicable
OplogMover.

b. ShipHashMap.java

The ShipHashMap Class extends extends HashMap. It allows HashMaps to be
created for each ship though an iterative process without hardwiring ship names into
variable names. Thus, a new HashMap variable is created for each ship. This method
should not be used for movers of Class Ship. See MoverHashMap. The Constructor

requires the ship’s name in String form.

78

APPENDIX B. RECOMMENDED ENHANCEMENTS

The Operational Logistics Wargame as presented by this thesis is fully functional;
however, there are areas where the design should be enhanced to improve playability,
functionality, realism, computer resource usage, and to make the wargame more robust.
The modular nature of the JAVA programming language allows for the wargame to be
modified in a piecemeal fashion so upgrades to the program can be either major or minor
in nature. There are virtually an unlimited number of enhancements that can be made to
the Operational Logistics Wargame. This appendix is not intended to be an all-inclusive
list of potential upgrades, but rather a recommended starting point for future versions of
the wargame. This chapter includes known recommendations organized by design area.
Within each design area, the recommendations viewed as most important are noted first.
1. PLAYABILITY AND FUNCTIONALITY ENHANCEMENTS

a. Save and Resume

The single most important upgrade that should be added to the Operational
Logistics Wargame is the ability to save a game session and subsequently resume the
game at a later time. Considered to be a major enhancement, changes would be
necessary to nearly every class in the Operational Logistics Wargame package. One
possible way to implement this feature would be through the use of the JAVA
Serialization API. In JAVA, objects exist only in the JAVA Virtual Machine and current
memory when the program is running. But, by implementing the Serializable Interface
where needed, objects could become persistent and exist outside the Java Virtual
Machine. (Greanier, 2000) Caution is necessary when using the Serializable Interface
due to its fragility. Another alternative for adding a Save and Resume function is the
through the use of XML. XML offers a much more robust method for the desired Save
and Resume features.

b. Course and Speed Visual Aids

The ships’ scheduled courses and speeds are not shown during game play, during
pauses, or when the courses and speeds are being set. Currently, the course is printed on

an output screen whenever a new course is chosen or an existing course has waypoints

79

added to it; but this is not a player-friendly method of passing the information. Adding a
visual reference showing the courses and speeds would enhance the interface between the
player and the wargame.

c. Identification of Movers

Methods should be added that allow the player to point and click on any Mover
displayed during a pause in game play. When a Mover is chosen, pertinent information
should be displayed on a pop-up screen such as it’s name, speed, and scheduled course.
Enemy Movers should only display name, speed, and current direction of movement. It
would also be helpful for the player to be able to find out the distance between a specific
Mover and any other point on the map.

d. Manual Deletion Of Underway Replenishment Requests

Methods should be added that allow the player to selectively delete Underway
Replenishment requests.

e. Underway Replenishment Rendezvous

There is no method that schedules a specific underway replenishment rendezvous
between Combat Logistics Force Ships and combatant ships. The current method does
not guarantee that the CLF ship and the combatant ship will rendezvous, it only schedules
the specified ships to sail toward a specific waypoints. This alternative could replace the
“Add new coordinates” selection on the “Select Actions Panel.” The “Add new
coordinates® does not seem to be as useful as the “Change Course” selection so can

probably be eliminated without notice.

2. IMPROVING COMPUTER RESOURCE USAGE AND ROBUSTNESS

a. JDBC Interface

Classes that use the JDBC driver to access the external database are not as
efficient as possible. Subsequently, the wargame program runs considerably slow
whenever information is needed from the database. These classes could be improved
through the use of joins wherever possible and other more efficient methods of calling the
data. In some cases, data is drawn that is never used. For example, Tomahawk and
Harpoon weights are retrieved along with the other weapon weights but since Tomahawk

and Harpoon cannot be replenished at sea, their weights are irrelevant. Another example

80

of irrelevant data being retrieved is that of weapons Range for Point Defense weapons.
Modifying the “Select ... Where ...” code in appropriate classes can eliminate
unnecessary look-ups.

b. Logical Class Structure

During development of the Operational Logistics Wargame, some classes were
written with more regard to game flow than logical Java class groupings. Although
significant revisions have been made, there are still some classes that require
modification to remove methods that more logically belong elsewhere or classes that are
large and awkward and should be sub-divided. For example, the Animation class was
originally intended only to show the player a visual display of the simulation. The
animation portion of this class is actually only a small part of the current version. The
methods of the Animation class that deal directly with the visual display of the various
Movers on the map should be made into a separate class of their own. The Animation
class should be renamed to reflect this change and the remaining elements of the class
should be further subdivided in other smaller logical classes. ~ Other classes that are
excellent candidates for sub-division are the IntelSummary and Deployment classes.

c. Reduce Game Delays

The delay between the opening GUI (OplogWelcome) and the Intelligence
Summary GUI (IntelSummary) can be made less noticeable by subdividing
IntelSummary. Several of the tabbed panes in IntelSummary do not depend upon data
from the database. Those panels can be shown in a separate frame in advance of the
remaining tabs. This will minimize the wait time since the player will have something to

do while waiting.

3. INCREASING REALISM AND COMPLEXITY

a. Scenario Development

There is no fully developed intelligence scenario. One should be developed.
Once other modifications noted herein are made, multiple scenarios, with

correspondingly different maps and enemy assets.

81

b. Friendly Air Assets

Friendly air assets should be added to the model. The Battle Group Air class is
included in the Operational Logistics Wargame package but is not currently used. The
BGAIir class was designed with Fixed Wing aircraft sorties in mind. Using the BGAir
class would also require the addition of Air sensors for Surface Threat and Air Threat
assets as well as subsequent modifications to classes involving the BGAir movers, their
sensors, and sensors to detect BGAir movers such as the Constant Rate Mediator,
Constant Rate Sensor, Controller, and Deployment, among others. Allowing the player
to set the course and speed for BGAir would be useful. The issue of weaponry aboard
each BGAir mover needs to be addressed as does logistics inventory of same. Possibly,
the mission parameter of each ship could be refined to differentiate aircraft carriers from
other combatants which would enable the simulation to determine whether or not a
specific ship should have the ability to launch fixed wing aircraft. Rotor wing aircraft are
not particularly needed at this stage of the wargame’s development.

c. F44 Consumption

Consumption of F44 should be based on the number of sorties per day rather than
a fixed “per day” rate. When the BGAIr class is implemented for the aircraft carriers,
consumption of F44 for the aircraft carriers can be directly linked to the number of sorties
flown per day. For other ships, F44 consumption can be based on an average number of
sorties per day per ship type. The F44 consumption rate might also take into account
whether a ship has been in combat within a 24 hour period. The assumption being that a
combat versus non-combat rate per day per ship type could be used.

d. Link Inventory Levels and Ship Capabilities

In addition to the severe penalties encountered when a ship reaches unsatisfactory
(or zero) inventory levels, ship capabilities should also be affected by low inventory
levels. Methods need to be added to the program code to do this. For example, if a ship
runs out of propulsion fuel, its speed should be reduced to zero. If a ship runs out of
Point Defense weapons, its probability of being damaged during an attack should be
increased. After implementation of BGAIr assets, if an aircraft carrier has no F44, it will

not be able to launch aircraft.

82

e. Weapons Use

Weapons ranges are not based on real weapons ranges and all offensive weapons
can fire at any target. Defensive weapons do not affect the probability of hit that a
Surface Threat or Air Threat has when it attacks a Battle Group asset. (See the
Methodology Chapter for more information.) The correct unclassified ranges for all
weapons are noted in the database and can be implemented whenever appropriate with
only slight code modifications. Modifications to allow weapons to fire only at certain
types of targets based on their type will require significant changes to the FireWeapons
classes. Corresponding changes should also be made to better simulate weapons fire by
threat assets. Changes to threat asset weaponry might include adding weapons counter
methods to Surface Threat and Air Threat Movers when the Mover is generated.

f. Weapons Inventory

Weapons Inventory is also calculated on rounds fired per event with a single unit
used representing the total amount fired per round. For example aircraft carriers typically
have the capacity to carry 12000 rounds of CIWS ammunition and fire 3,000 rounds per
raid by enemy assets. CLF ships with CIWS (Sacramento and Supply Class ships) also
consume 3,000 rounds per raid. However, other ships only use 1000 rounds per raid. In
the wargame, consumption has been simplified so that all ships expend the same amount
per raid, with capacities adjusted accordingly to reflect an accurate number of possible
rounds fired. For transportation purposes, each round weighs approximately .5 pounds
with the casing and packing materials. In the Operational Logistics Wargame database,
the capacity of CIWS aboard aircraft carriers is 4 units with 1 round expended per enemy
raid, and the weight per unit is 3000 rounds x .5 = 1,500 pounds. While technically
accurate for some of the ships, this method sets artificial capacities for other ships, and
the numbers displayed may be confusing to the player. The oplog database contains
rounds expended per raid as well as the simplified versions. Wargame code should be
modified to use the actual capacities, weights, and expenditure values. This modification

would require changes to both inventory reporting and consumption methods.

83

g. Multiple Combat Logistics Force Ships

In some classes, the model is not designed to handle more than one Combat
Logistics Force Ship. The database contains all classes of CLF ships, and any single CLF
ship can be used with its actual capacity; however, if more than one CLF ship is desired
in the wargame for both station ship and shuttle ship roles, numerous classes will need to
be modified. Less modification is required if all CLF ships are used only as station ships.

h. Additional Combatant and Combat Types

Additional types of combatants can be added to the simulation. Among the
possibilities are Subsurface Battle Group assets and Subsurface Threats. Additional types
of combat and appropriate forces can also be added such as Amphibious landings by
Amphibious forces or land warfare.

i. Simulation times

In the wargame, many events occur instantly when in reality the events are not
instantaneous. In some cases this makes no difference to the outcome. For example, a
real ship must accelerate or decelerate to change its speed. In the simulation, speed
changes occur instantly at the scheduled time. When a simulation is run covering several
days, the small amount of time involved in a real speed change is not relevant. However,
other events, such as the length of a Port Visit or Underway Replenishment could affect
game play and should be modeled to include a delay factor. Creative use of Simkit’s
waitDelay() method where needed may enable the model to realistically include delay
times for significant events that are not currently modeled as such.

i Land versus Water

The current version of the Operational Logistics Wargame does not differentiate
between land and water for the movement of ships and aircraft. Methods should be
developed that establish boundaries between the two types of geography. Once these
methods exist, the scenario, including background map will be easier to change.

k. Refine Stores and Weapons RAS.

The method used to determine if either weapons or stores are replenished at sea is
based on a simple aggregate total weight. Additionally, the Java code is hardwired to

determine if specific weapons can be replenished at sea. These methods should be

84

refined to have the determination based on whether or not the CLF ship has a particular

item onboard and if specific weapons can be replenished at sea.

85

THIS PAGE INTENTIONALLY LEFT BLANK

86

LIST OF REFERENCES

Greanier, T., “Discover the Secrets of the JAVA Serialization API”,
http://developer.java.sun.com/developer/technical Articles Programming/serialization,
(reprinted from JavaWorld, July 2000), September 2001.

Mitchell, M. L., Pro-Log 4.0: An Interactive War Game for teaching the importance of
LOGISTICS Planning and Execution, NPS, July 1988.

Perla, P.P., The Art of Wargaming, Naval Institute Press, 1990.

Schrady, D. A., User’s Guide for TACLOGS: Battle Group Tactical Logistics Support
System, NPS, December 1996.

Schrady, D. A., G.K.Smyth, and R. B. Vassian, Predicting Ship Fuel Consumption:
Update, NPS, July 1996.

Sterba, J. R., Operational Maneuver from the Sea Logistics Training Aid, NPS,
September 1999,

Troxell, A. W., Naval Logistics Simulator, NPS, September 1999.

Walrath,K. and M. Campione, The JFC Swing Tutorial: A Guide to Constructing GUIs,
Addison Wesley, November 2000.

www.au.af.mil/au/cpd/cpdgate/clip_af.htm, Air War College Website, November 2001.

www.janesonline.com, Jane’s Online 2001 website, November 2001.

www.nationalgeographic.com, National Geographic website, November 2001.

www.webclipart.about.com, Web Clip Art web site, November 2001.

87

http://developer.java.sun.com/developer/technicalArticles Programming/serialization
http://www.au.af.mil/au/cpd/cpdgate/clip_af.htm
http://www.janesonline.com/
http://www.nationalgeographic.com/
http://www.webclipart.about.com/

THIS PAGE INTENTIONALLY LEFT BLANK

88

BIBLIOGRAPHY

Aydin, E., Screen Dispositions of Naval Task Forces Against Anti-Ship Missiles, NPS,
March 2000.

Blanchette, B.J., Modeling Surface ASW and ASUW Engagements for the Naval
Postgraduate School Logistics Wargame, NPS, September 1988.

Bracken, J., M. Kress, and R. E. Rosenthal, eds, Warfare Modeling, MORS, 1995.

Buss, A., “Discrete Event Programming with Simkit”, Simulation News Europe, Issue 32,
August 2001.

Campione, M., K. Walrath, and A. Huml, The Java Tutorial Continued: The Rest of
JDK, Addison Wesley, January 2000.

Greanier, T. , “Discover the Secrets of the JAVA Serialization API”,
http://developer.java.sun.com/developer/technical Articles/Programming/serialization,
(reprinted from JavaWorld, July 2000), September 2001.

Hodges, J. S. and J. A. Dewar, Is it You or Your Model Talking? A Framework for Model
Validation, Rand, 1992.

Law, A. M. and W. D. Kelton, Simulation Modeling and Analysis, McGraw-Hill, 2000.

Le, H. B., Advanced Naval Surface Fire Support Weapon Employment Against Mobile
Targets, NPS, December 1999.

Mitchell, M. L., Pro-Log 4.0: An Interactive War Game for teaching the importance of
LOGISTICS Planning and Execution, NPS, July 1988.

Perla, P.P., The Art of Wargaming, Naval Institute Press, 1990.

Schrady, D. A., User’s Guide for TACLOGS: Battle Group Tactical Logistics Support
System, NPS, December 1996.

Schrady, D. A., G.K.Smyth, and R. B. Vassian, Predicting Ship Fuel Consumption:
Update, NPS, July 1996.

Sterba, J. R., Operational Maneuver from the Sea Logistics Training Aid, NPS,
September 1999,

Thesis Preparation Manual, NPS, August 1999.

89

http://developer.java.sun.com/developer/technicalArticles/Programming/serialization

Troxell, A. W., Naval Logistics Simulator, NPS, September 1999.

Walrath,K. and M. Campione, The JFC Swing Tutorial: A Guide to Constructing GUIs,
Addison Wesley, November 2000.

White, S., Fisher, R. Cattell, G. Hamilton, and M. Hapner, JDBC API Tutorial and
Reference, Second Edition: Universal Data Access for the Java 2 Platform, Addison
Wesley, July 2000.

www.au.af.mil/au/cpd/cpdgate/clip_af.htm, Air War College Website, November 2001.

www.janesonline.com, Jane’s Online 2001 website, November 2001.

www.nationalgeographic.com, National Geographic website, November 2001.

www.webclipart.about.com, Web Clip Art web site, November 2001.

90

http://www.au.af.mil/au/cpd/cpdgate/clip_af.htm
http://www.janesonline.com/
http://www.nationalgeographic.com/
http://www.webclipart.about.com/

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Fort Belvoir, Virginia

Dudley Knox Library
Naval Postgraduate School
Monterey, California

Professor Dan Boger
Naval Postgraduate School
Monterey, California

Defense Logistic Studies Information Exchange
U.S. Army Logistics Management College
Fort Lee, Virginia

Professor David Schrady, Code OR/SO
Department of Operations Research
Naval Postgraduate School

Monterey, California

Professor Arnold Buss, Code OR/BU
Department of Operations Research
Naval Postgraduate School
Monterey, California

CDR Kevin J. Maher, Code OR/MK
Department of Operations Research
Naval Postgraduate School
Monterey, California

LCDR Carolyn S. Fricke

5322 Chieftain Circle
Alexandria, Virginia 22312

91

	I. INTRODUCTION
	II. METHODOLOGY
	A.MODELING AND JAVA PROGRAMMING
	B.DATABASE DEVELOPMENT
	1.CVBG Database
	2.Threat Database

	C. METHODOLOGY SUMMARY

	III. PLAYER MANUAL
	A.OPERATIONAL LOGISTICS WARGAME SUMMARY
	1.Offense
	2.Enemy Detection
	3.Defense
	4.Logistics
	a.Logistics Items
	b.Logistics Units
	c.Replenishment Requests
	d.Port Visits

	B.GAME PLAY START-UP
	1.Installation
	2.Initialization

	C.WELCOME SCREEN
	D.PLEASE WAIT PANEL
	E.INTELLIGENCE SUMMARY
	1.Intelligence Summary Tab
	2.Game Rules Tab
	3.Battle Group Summary Tab
	4.Current Logistics Status Tab
	5.Current Weapons Status Tab
	6.PreSail Decisions

	F.SETTING COURSE AND SPEED
	1.Course and Speed
	2.Course and Speeds for the CVBG (by group)
	3.Course and Speeds for Individual Ships

	G. ANIMATION
	1.Animation Tab
	2.Actions Tab
	a.Reason For Auto-Pause Panel
	b.Score Panel
	c.Sim Time Panel
	d.Game Summary Log Panel
	e.Select Actions Panel
	f.CLF Status Panel
	g.Logistics Status Panel
	h.Weapons Status Panel

	3.Control Panel

	H.PANELS SPAWNED BY SELECT ACTIONS PANEL
	1.Fire Weapons Panel
	2.Unrep Orders Panel
	a.Place an Order
	b.The Unrep Schedule
	c.Check an Order

	3.Change Coordinates Panels
	4.Add Coordinates Panel
	5.Save and Exit

	I.OTHER TOPICS
	1.Bonus and Penalty Points
	2.Surface Threats and Air Threats
	3.Scheduling Port Visits and Underway Replenishments

	IV. REFEREE MANUAL
	A. DATABASE CONTROL
	B.JAVA CODE CONTROL
	1.Maps, Bases, and Coordinate System
	2.Penalty and Bonus Points
	3.Random Variables
	4.Other Variables

	C.MISCELLANEOUS CONTROL

	V. CONCLUSIONS AND RECOMMENDATIONS
	A.ADVANTAGES
	1.Flexible
	2.Modern
	3.User-Friendly
	4.Quick Starter
	5.Portable

	B.RECOMMENDED ENHANCEMENTS
	1. State Variable Statistics
	2. Logistics and Weapons Inventory Statistics
	3.Other Game Play Statistics
	4.Cookie Cutter Sensors
	5.Enhancing Realism
	6. Hardwired Data
	a.Instance Variables
	b.Friendly and Enemy Bases
	c.Threat Air and Threat Surface Movement

	C.CONCLUSION

	APPENDIX A . THE OPLOG PACKAGE
	1.OPLOG.DATABASE CLASSES
	a.DataBaseInfo.java
	b.DataRepository.java
	c.LogRates.java
	d.ThreatDataGetter.java
	e.WeaponsData.java

	2.OPLOG.GRAPHICS CLASSES
	a.Animate.java
	b.ControlPanel.java
	c.Pinger.java
	d.SimTimePanel.java

	3.OPLOG.GUI CLASSES
	a.AfterWelcome.java
	b.CasGroupSetter.java
	c.CASListener.java
	d.CasUnitSetter.java
	e.CourseAndSpeed.java
	f.FireResultsPanel.java
	g.FireWeaponsPanel.java
	h.IntelSummary.java
	i.LogProgressBar.java
	j.MoreCasGroupSetter.java
	k.MoreCasUnitSetter.java
	l.MoreCourseAndSpeed.java
	m.MoreCourseAndSpeedUnits.java
	n.OplogWelcome.java
	o.PleaseWaitPanel.java
	p.SelectActionsListener.java
	q.SelectActionsPanel.java
	r.SliderListener
	s.SwingWorker.java
	t.TheLogPanel.java

	4.OPLOG.LOG CLASSES
	a.CheckUnrepSchedule.java
	b.CLFPanel.java
	c.CLFStatus.java
	d.DeleteUnrepRequest.java
	e.LogStatus.java
	f.OrderListener.java
	g.PlacedRASRequestsPanel.java
	h.ScorePanel.java
	i.ShipRASRequestsPanel.java
	j.ShowOrderPanel.java
	k.UnrepScheduler.java
	l.UnrepSummaryPanel.Java
	m.WeaponsStatus.java

	5.OPLOG.SMD CLASSES
	a.AirBG.java
	b.AirThreat.java
	c.AirThreatCourseGenerator.java
	d.AirThreatGenerator.java
	e.ArrivalProcess.java
	f.BattleGroupMoverManager.java
	g.ConstantRateMediator.java
	h.ConstantRateSensor.java
	i.Controller.java
	j.Deployment.java
	k.EnemyBase.java
	l.EnemyBaseGenerator.java
	m.FriendlyBase.java
	n.FriendlyBaseGenerator.java
	o.GenRandomDBTargets.java
	p.OplogMover.java
	q.PathMoverManager.java
	r.Ship.java
	s.SurfaceThreat.java
	t.SurfaceThreatCourseGenerator.java

	6.OPLOG.UTIL CLASSES
	a.MoverHashMap.java
	b.ShipHashMap.java

	APPENDIX B. RECOMMENDED ENHANCEMENTS
	1. PLAYABILITY AND FUNCTIONALITY ENHANCEMENTS
	a.Save and Resume
	b.Course and Speed Visual Aids
	c.Identification of Movers
	d.Manual Deletion Of Underway Replenishment Requests
	e.Underway Replenishment Rendezvous

	2.IMPROVING COMPUTER RESOURCE USAGE AND ROBUSTNESS
	a.JDBC Interface
	b.Logical Class Structure
	c.Reduce Game Delays

	3.INCREASING REALISM AND COMPLEXITY
	a.Scenario Development
	b. Friendly Air Assets
	c.F44 Consumption
	d.Link Inventory Levels and Ship Capabilities
	e.Weapons Use
	f.Weapons Inventory
	g.Multiple Combat Logistics Force Ships
	h.Additional Combatant and Combat Types
	i.Simulation times
	j.Land versus Water
	k.Refine Stores and Weapons RAS.

	LIST OF REFERENCES
	BIBLIOGRAPHY
	INITIAL DISTRIBUTION LIST

