
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

OPERATIONAL LOGISTICS WARGAME

by

Carolyn S. Fricke

December 2001

 Thesis Advisor: Arnold H. Buss
 Second Reader: Kevin J. Maher

Approved for public release; distribution is unlimited.

 ii

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2001

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Title (Mix case letters)
Operational Logistics Wargame
6. AUTHOR(S) Carolyn S. Fricke

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

ABSTRACT (maximum 200 words)

This thesis provides an interactive wargame for use by students of Operational Logistics at the
Naval Postgraduate School. The objective of the wargame is to show students how their
decisions regarding resupply of combatant forces affect the ability of those forces to carry-out
their wartime missions. The core programming of the Operational Logistics Wargame, as
presented by this thesis, deals with a Carrier Battle Group and its missions of command of the
sea and power projection ashore. Written in a modular fashion, the wargame can be expanded
in scope at a later date to include other combatant missions and components such as
submarines, amphibious forces, or ground forces. The modular design allows the wargame to
have modifications made to it without alterations to components not directly involved. The
wargame also draws data from an outside database by using Structured Query Language (SQL)
and a Java Database Connectivity - Open Database Connectivity (JDBC-ODBC) Bridge. The
wargame can be installed on most major operation systems. Other major design features of the
wargame are Discrete Event Simulation and extensive use of Graphical User Interfaces (GUIs)
for providing information to the player and obtaining information from the player.

15. NUMBER OF
PAGES

119

14. SUBJECT TERMS Operational Logistics, Operations Research, Discrete
Event Simulation, Wargame, Simulation, JDBC, JDBC-ODBC, GUI,
Graphical User Interface, Java Swing, Java, 16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

 i

THIS PAGE INTENTIONALLY LEFT BLANK

 ii

 iii

THIS PAGE INTENTIONALLY LEFT BLANK

 iv

ABSTRACT

This thesis provides an interactive wargame for use by students of Operational

Logistics at the Naval Postgraduate School. The objective of the wargame is to show

students how their decisions regarding resupply of combatant forces affect the ability of

those forces to carry-out their wartime missions. The core programming of the

Operational Logistics Wargame, as presented by this thesis, deals with a Carrier Battle

Group and its missions of command of the sea and power projection ashore. Written in a

modular fashion, the wargame can be expanded in scope at a later date to include other

combatant missions and components such as submarines, amphibious forces, or ground

forces. The modular design allows the wargame to have modifications made to it without

alterations to components not directly involved. The wargame also draws data from an

outside database by using Structured Query Language (SQL) and a JDBC - Open

Database Connectivity (JDBC-ODBC) Bridge. The wargame can be installed on most

major operating systems. Other major design features of the wargame are Discrete Event

Simulation and extensive use of Graphical User Interfaces (GUIs) for providing

information to the player and obtaining information from the player.

 v

THIS PAGE INTENTIONALLY LEFT BLANK

 vi

DISCLAIMER

 The reader is cautioned that computer programs developed in this research may

not have been exercised for all cases of interest. While every effort has been made,

within the time available, to ensure that the programs are free of computational and logic

errors, they cannot be considered validated. Any application of these programs without

additional verification is at the risk of the player.

 vii

THIS PAGE INTENTIONALLY LEFT BLANK

 viii

TABLE OF CONTENTS

I. INTRODUCTION..1

II. METHODOLOGY ...5
A. MODELING AND JAVA PROGRAMMING ..5
B. DATABASE DEVELOPMENT ...7

1. CVBG Database ...7
2. Threat Database ...14

C. METHODOLOGY SUMMARY ..15

III. PLAYER MANUAL ...17
A. OPERATIONAL LOGISTICS WARGAME SUMMARY18

1. Offense ..18
2. Enemy Detection ..18
3. Defense ..18
4. Logistics ..19

a. Logistics Items...19
b. Logistics Units ...19
c. Replenishment Requests ...20
d. Port Visits ..20

B. GAME PLAY START-UP ..21
1. Installation..21
2. Initialization..21

C. WELCOME SCREEN ..21
D. PLEASE WAIT PANEL ...22
E. INTELLIGENCE SUMMARY ..22

1. Intelligence Summary Tab..23
2. Game Rules Tab...24
3. Battle Group Summary Tab ...24
4. Current Logistics Status Tab..25
5. Current Weapons Status Tab ...26
6. PreSail Decisions ..27

F. SETTING COURSE AND SPEED...28
1. Course and Speed...28
2. Course and Speeds for the CVBG (by group)29
3. Course and Speeds for Individual Ships..31

G. ANIMATION ...33
1. Animation Tab ...33
2. Actions Tab...34

a. Reason For Auto-Pause Panel ...34
b. Score Panel..34
c. Sim Time Panel ...34
d. Game Summary Log Panel...35
e. Select Actions Panel..35
f. CLF Status Panel ..36

 ix

g. Logistics Status Panel ...37
h. Weapons Status Panel...37

3. Control Panel..38
H. PANELS SPAWNED BY SELECT ACTIONS PANEL............................39

1. Fire Weapons Panel ...39
2. Unrep Orders Panel...42

a. Place an Order ..43
b. The Unrep Schedule..45
c. Check an Order ...46

3. Change Coordinates Panels ..47
4. Add Coordinates Panel..50
5. Save and Exit ..50

I. OTHER TOPICS ...50
1. Bonus and Penalty Points..50
2. Surface Threats and Air Threats..51
3. Scheduling Port Visits and Underway Replenishments52

IV. REFEREE MANUAL ...53
A. DATABASE CONTROL ..53
B. JAVA CODE CONTROL ...53

1. Maps, Bases, and Coordinate System ..53
2. Penalty and Bonus Points..54
3. Random Variables ...54
4. Other Variables..55

C. MISCELLANEOUS CONTROL ...55

V. CONCLUSIONS AND RECOMMENDATIONS...57
A. ADVANTAGES..57

1. Flexible ..57
2. Modern..57
3. User-Friendly..57
4. Quick Starter..58
5. Portable...58

B. RECOMMENDED ENHANCEMENTS ...58
1. State Variable Statistics...58
2. Logistics and Weapons Inventory Statistics58
3. Other Game Play Statistics ...58
4. Cookie Cutter Sensors ...59
5. Enhancing Realism ..59
6. Hardwired Data ...59

a. Instance Variables ..59
b. Friendly and Enemy Bases ...60
c. Threat Air and Threat Surface Movement.............................60

C. CONCLUSION ..60

APPENDIX A . THE OPLOG PACKAGE ..61
1. OPLOG.DATABASE CLASSES ...61

 x

a. DataBaseInfo.java..61
b. DataRepository.java ..61
c. LogRates.java ...62
d. ThreatDataGetter.java ..62
e. WeaponsData.java ...62

2. OPLOG.GRAPHICS CLASSES ..63
a. Animate.java...63
b. ControlPanel.java ..63
c. Pinger.java..63
d. SimTimePanel.java ..64

3. OPLOG.GUI CLASSES..64
a. AfterWelcome.java ..64
b. CasGroupSetter.java ...64
c. CASListener.java ...65
d. CasUnitSetter.java...65
e. CourseAndSpeed.java ...65
f. FireResultsPanel.java ..65
g. FireWeaponsPanel.java...65
h. IntelSummary.java ..66
i. LogProgressBar.java ...66
j. MoreCasGroupSetter.java..66
k. MoreCasUnitSetter.java..66
l. MoreCourseAndSpeed.java ..67
m. MoreCourseAndSpeedUnits.java...67
n. OplogWelcome.java ...67
o. PleaseWaitPanel.java...67
p. SelectActionsListener.java ..68
q. SelectActionsPanel.java...68
r. SliderListener ...68
s. SwingWorker.java ...68
t. TheLogPanel.java ..68

4. OPLOG.LOG CLASSES ..69
a. CheckUnrepSchedule.java ..69
b. CLFPanel.java..69
c. CLFStatus.java...69
d. DeleteUnrepRequest.java..70
e. LogStatus.java..70
f. OrderListener.java ..70
g. PlacedRASRequestsPanel.java...70
h. ScorePanel.java ..70
i. ShipRASRequestsPanel.java ..70
j. ShowOrderPanel.java..71
k. UnrepScheduler.java ...71
l. UnrepSummaryPanel.Java ...71
m. WeaponsStatus.java...71

 xi

5. OPLOG.SMD CLASSES ..72
a. AirBG.java..72
b. AirThreat.java..72
c. AirThreatCourseGenerator.java..72
d. AirThreatGenerator.java..72
e. ArrivalProcess.java..73
f. BattleGroupMoverManager.java...73
g. ConstantRateMediator.java..73
h. ConstantRateSensor.java ..74
i. Controller.java ...74
j. Deployment.java...74
k. EnemyBase.java ...75
l. EnemyBaseGenerator.java ...75
m. FriendlyBase.java...75
n. FriendlyBaseGenerator.java...76
o. GenRandomDBTargets.java...76
p. OplogMover.java ...77
q. PathMoverManager.java ..77
r. Ship.java ...77
s. SurfaceThreat.java ..77
t. SurfaceThreatCourseGenerator.java ..78

6. OPLOG.UTIL CLASSES ...78
a. MoverHashMap.java...78
b. ShipHashMap.java ..78

APPENDIX B. RECOMMENDED ENHANCEMENTS...79
1. PLAYABILITY AND FUNCTIONALITY ENHANCEMENTS..............79

a. Save and Resume..79
b. Course and Speed Visual Aids ..79
c. Identification of Movers ..80
d. Manual Deletion Of Underway Replenishment Requests..............80
e. Underway Replenishment Rendezvous..80

2. IMPROVING COMPUTER RESOURCE USAGE AND
ROBUSTNESS ...80
a. JDBC Interface...80
b. Logical Class Structure ...81
c. Reduce Game Delays ...81

3. INCREASING REALISM AND COMPLEXITY81
a. Scenario Development ...81
b. Friendly Air Assets ..82
c. F44 Consumption...82
d. Link Inventory Levels and Ship Capabilities..................................82
e. Weapons Use...83
f. Weapons Inventory..83
g. Multiple Combat Logistics Force Ships...84
h. Additional Combatant and Combat Types84

 xii

i. Simulation times...84
j. Land versus Water...84
k. Refine Stores and Weapons RAS..84

LIST OF REFERENCES..87

BIBLIOGRAPHY..89

INITIAL DISTRIBUTION LIST ...91

 xiii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiv

LIST OF FIGURES

Figure 1. Wargame Programming Flow ...6
Figure 2. Courtesy of Professor D. A. Schrady ..17
Figure 3. Operational Logistics Wargame Panel ..22
Figure 4. Please Wait Panel ..22
Figure 5. Intelligence Summary Tab ..23
Figure 6. Game Rules Tab ..24
Figure 7. Battle Group Summary Tab...25
Figure 8. Current Logistics Status Tab ...26
Figure 9. Current Weapons Status Tab ...27
Figure 10. PreSail Decisions Tab..28
Figure 11. Course and Speed Panel ..29
Figure 12. Course and Speeds for the CVBG (by group) Panel. After Ref. National

Geographic...30
Figure 13. Sample CAS Group Output ...30
Figure 14. Course and Speeds for individual ships Panel. After Ref. National

Geographic...32
Figure 15. Sample Individual Ship CAS Output ..32
Figure 16. Animation Tab. After Ref. National Geographic. ..33
Figure 17. Actions Tab, View 1..35
Figure 18. Actions Tab, View 2..36
Figure 19. Actions Tab, View 3..37
Figure 20. Actions Tab, View 4..38
Figure 21. Fire Weapons Panel...40
Figure 22. BDA Report: Lucky Shot ...41
Figure 23. BDA Report: Destruction ...41
Figure 24. BDA Report: Damage ..41
Figure 25. BDA Report: Undamaged ..41
Figure 26. BDA Report: Weapon Out of Range Penalty...42
Figure 27. BDA Report: Zero Inventory Penalty...42
Figure 28. Unrep Orders Panel ...43
Figure 29. Placing an UNREP request Panel..44
Figure 30. Sample Selected Order, Scheduled..46
Figure 31. Sample Selected Order, Unscheduled ...46
Figure 32. Change Coordinates Course and Speed Panel...47
Figure 33. Change CoordinatesGroup Course and Speeds Panel. After Ref. National

Geographic...48
Figure 34. Change Coordinates Course and Speed Unit Selection Panel...............................49
Figure 35. Change Coordinates Unit Course and Speed Panel. After Ref. National

Geographic...49

 xv

THIS PAGE INTENTIONALLY LEFT BLANK

 xvi

LIST OF TABLES

Table 1. CVBG Table ...8
Table 2. TypeData Table...9
Table 3. TypeSensors Table..10
Table 4. Sensors Table..10
Table 5. TypeWeapons Table, partial data only ...12
Table 6. Weapons Table ...12
Table 7. General Planning Factors..13
Table 8. TypeLogistics Table, partial data only ...13
Table 9. CLFcapacity Table..14
Table 10. Threat Ships Table ..14
Table 11. Oplog Weapon Ranges ...40
Table 12. Bonus and Penalty Point Values...51

 xvii

THIS PAGE INTENTIONALLY LEFT BLANK

 xviii

LIST OF SYMBOLS, ACRONYMS AND/OR ABBREVIATIONS

BDA Battle Damage Assessment
CIWS Close In Weapons System
CLF Combat Logistics Force
CVBG Carrier Battle Group
DSN Data Source Name
FIFO First-In, First-Out
GPF General Planning Factors
GUI Graphical User Interface
IDE Integrated Development Environment
JDBC Acronym has no meaning, JDBC is stand-alone phrase
JDBC-ODBC JDBC-Open Database Connectivity
ODBC Open Database Connectivity
Oplog Operational Logistics
Pro-Log A Fortran-based forerunner of the Operational Logistics Wargame
RAS Replenishment at Sea
SQL Structured Query Language
TACLOGS Tactical Logistics Support System
Unrep Underway Replenishment

 xix

THIS PAGE INTENTIONALLY LEFT BLANK

 xx

EXECUTIVE SUMMARY

Military personnel at all levels play wargames to ‘experience the realities of

decision making.’ (Perla, 302) Students of Operational Logistics at the Naval

Postgraduate School play wargames for the same reason. A major issue in the

development of a military wargame is the balance between realism and playability.

Another issue is whether a particular game meets the training needs of specific users.

Since a single wargame is not capable of being realistic and playable while still meeting

the needs of all possible users, wargames are often developed to meet the needs of a

specific group of end users. Operational Logistics students are one such specific group of

end users. While there are a multitude of modern wargames and combat simulations, the

vast majority do not include logistics in the game play. The few models that do include a

logistics component (such as JWARS) require users to have a considerable amount of

training to obtain a basic working knowledge of the game’s operation. They also have an

extremely detailed level of resolution and place the main emphasis on combat rather than

logistics. Thus, these existing models are not suitable for basic Operational Logistics

training.

Students of Operational Logistics at the Naval Postgraduate School take a

required course on the fundamentals of the Naval Logistics system. Part of the course is

spent using interactive computer simulations as training aids to better understand the

material being taught. A forerunner of the Operational Logistics Wargame, called PRO-

LOG, was developed in the 1980’s by NPS students and instructors to acquaint

Operational Logistics students with logistical concepts. PRO-LOG is a deterministic

combat model with a single scripted scenario. It has virtually no graphic capabilities and

has user interfaces that are cumbersome and difficult to use. The wargame was written in

Fortran, an archaic language, and would require extensive program code changes to

modify the wargame structure at the most basic level. While PRO-LOG met the needs of

students at the time, advances in modeling combat techniques and computer technology

have made PRO-LOG obsolete; however, the reasons for PRO-LOG’s development still

exist: logisticians, like warfighters, enhance their wartime capabilities by practicing with

true-to-life simulations. Although many basic combat models available today seem

 xxi

similar to this simulation, the similarity is on the surface only and extends only to the

combat between the forces. Most basic models do not include logistics in the game play.

Including logistics in a model requires that logistical considerations be incorporated from

the very beginning. Retrofit of an existing combat model to include logistics simply isn’t

viable.

In order to meet the continuing goal of training Logistics Officers to make

effective decisions in a combat situation, the introductory Operational Logistics course

needed a modern replacement for PRO-LOG. To be a worthwhile replacement, the new

wargame needed to be written in modern code using the latest Operations Research

simulation techniques. It needed to be configurable, expandable, and stochastic. User

interfaces needed to be user-friendly. And, the amount of time needed to train players

needed to be equitable with the length of time that the Operational Logistics course

devotes to the wargame. The Operational Logistics Wargame exceeds all qualifications

desired in a replacement for PRO-LOG. It will assist Operational Logistics students in

understanding their roles.

The core programming of the Operational Logistics Wargame, as presented by

this thesis, deals with a Carrier Battle Group and its missions of command of the sea and

power projection ashore. Written in the Java programming language and in a modular

fashion, the wargame can be expanded in scope at a later date to include other combatant

missions and components such as submarines, amphibious forces, or ground forces. The

modular design also allows the wargame to have modifications made to it without

alterations to components not directly involved. Component modifications and additions

can be made in future versions that make the wargame more complex and robust.

The wargame draws data from an outside database using Structured Query

Language (SQL) and a “JDBC” driver. The portability of the Java program language

allows the wargame to be run on most major operating systems. Other major design

features of the wargame are Discrete Event Simulation and extensive use of Graphical

User Interfaces (GUIs) for providing information to the player and obtaining information

from the player.

 xxii

The Operational Logistics Wargame is intended as an introduction to Operational

Logistics only. It is a precursor to more complex and challenging wargames encountered

in Joint and Combined Logistics and Logistics Modeling coursework.

 xxiii

THIS PAGE INTENTIONALLY LEFT BLANK

 xxiv

ACKNOWLEDGMENT

 I would like to thank Professor Arnold H. Buss for his outstanding guidance and

his belief in my programming skills. I also wish to thank Professor David A. Schrady for

his superior assistance and support throughout the thesis process. I would also like to

express my appreciation to Commander Kevin J. Maher, Supply Corp, U. S. Navy for

recommending this topic. Furthermore, I want to thank Captain Thomas Erlenbruch,

German Army for his great troubleshooting assistance in the Geek Lab. I still don’t know

whether to thank or condemn all my other classmates for encouraging me to be a geek but

it sure was interesting getting there.

 xxv

THIS PAGE INTENTIONALLY LEFT BLANK

 xxvi

I. INTRODUCTION

Historians aren’t sure when or why the first wargame was invented; but, they do

know that wargames have existed throughout the recorded history of mankind.

Contemporaries of the Chinese general and military philosopher Sun Tzu played his

wargame Wei Hai about 3000 B.C. Christopher Weikhmann’s peers played his wargame

Koenigspiel at the end of the 17th century. Modern wargamers play wargames as

(seemingly) simple as chess, as complex as JWARS, and wargames of any level of

complexity in between. Although vastly different in appearance, entertainment value,

rules, and complexity most of these wargames have a common thread running through

them: their utility as training devices.

Military personnel at all levels play wargames to ‘experience the realities of

decision making.’ (Perla, 302) Students of Operational Logistics at the Naval

Postgraduate School play wargames for the same reason. A major issue in the

development of a military wargame is the balance between realism and playability.

Another issue is whether a particular game meets the training needs of specific users.

Since a single wargame is not capable of being realistic and playable while still meeting

the needs of all possible users, wargames are often developed to meet the needs of a

specific group of end users. Operational Logistics students are one such specific group of

end users. While there are a multitude of modern wargames and combat simulations, the

vast majority do not include logistics in the game play. The few models that do include a

logistics component (such as JWARS) require users to have a considerable amount of

training to obtain a basic working knowledge of the game’s operation, have an extremely

detailed level of resolution, and place the main emphasis on combat rather than logistics.

Thus, they are not suitable for basic Operational Logistics training.

Students of Operational Logistics at the Naval Postgraduate School take a

required course on the fundamentals of the Naval Logistics system. Part of the course is

spent using interactive computer simulations as training aids to better understand the

material being taught. A forerunner of the Operational Logistics Wargame called PRO-

LOG was developed in the 1980’s by NPS students and instructors to acquaint students

 1

with logistical concepts. PRO-LOG is a deterministic combat model with a single

scripted scenario. It has virtually no graphic capabilities and has user interfaces that are

cumbersome and difficult to use. The wargame was written in Fortran, an archaic

language, and would require extensive program code changes to modify the wargame

structure at the most basic level. While PRO-LOG met the needs of students at the time,

advances in modeling combat techniques and computer technology have made PRO-LOG

obsolete; however, the reasons for PRO-LOG’s development still exist: Logisticians, like

warfighters , enhance their wartime capabilities by practicing with true-to-life

simulations. Although many basic combat models available today seem similar to this

simulation, the similarity is on the surface only and extends only to the combat between

the forces. Most basic combat models do not include logistics in the game play.

Including logistics in a model requires that logistical considerations be incorporated from

the very beginning. Retrofit of an existing combat model to add logistics simply isn’t

viable.

In order to meet the continuing goal of training Logistics Officers to make

effective decisions in a combat situation, the introductory Operational Logistics course

needed a modern replacement for PRO-LOG. To be a worthwhile replacement, the new

wargame needed to be written in modern code using the latest Operations Research

simulation techniques. It needed to be configurable, expandable, and stochastic. User

interfaces needed to be user-friendly. And, the amount of time needed to train players

needed to be equitable with the length of time that the Operational Logistics course

devotes to the wargame. The Operational Logistics Wargame exceeds all qualifications

desired in a replacement for PRO-LOG. It will assist Operational Logistics students in

understanding their roles.

The core programming of the Operational Logistics Wargame, as presented by

this thesis, deals with a Carrier Battle Group and its missions of command of the sea and

power projection ashore. Written in the Java programming language and in a modular

fashion, the wargame can be expanded in scope at a later date to include other combatant

missions and components such as submarines, amphibious forces, or ground forces. The

modular design allows the wargame to have modifications made to it without alterations

 2

to components not directly involved. Component modifications and additions can be

made in future versions that make the wargame more complex and robust.

The wargame draws data from an outside database by using Structured Query

Language (SQL) and a JDBC driver. Due to the portability of the Java programming, the

wargame can be installed on most major operating systems. Other major design features

of the wargame are Discrete Event Simulation and extensive use of Graphical User

Interfaces (GUIs) for providing information to the player and obtaining information from

the player.

The Operational Logistics Wargame is intended as an introduction to Operational

Logistics only. It is a precursor to more complex and challenging wargames encountered

in Joint & Combined Logistics and Logistics Modeling coursework.

 3

THIS PAGE INTENTIONALLY LEFT BLANK

 4

II. METHODOLOGY

The Operational Logistics Wargame is a combat model designed with the best

Operations Research modeling and simulation techniques throughout. This chapter

highlights key design factors of the wargame and is divided into two sections. The first

section discusses the architecture of the combat model. The second section discusses the

design of the external database, which is the main source of data on the Carrier Battle

Group force structure.

A. MODELING AND JAVA PROGRAMMING

The core of the Operational Logistics Wargame is a discrete event simulation.

This core programming is wrapped in a layer of Graphical User Interfaces (GUIs) to

interact with the player and JDBC interfaces to obtain its data. The wargame provides

output through the use of data GUIs, output screens, and an animated map display.

Where appropriate, this simulation incorporates randomness for more realism than

deterministic, scripted events like its predecessor PRO-LOG.

This section describes the overall structure of the Operational Logistics Wargame,

and is intended to aid future Operational Logistics developers in modifying this wargame.

Figure 1 is a view of the program flow among the classes and shows the general

relationships. Each box in Figure 1 shows one or more Java classes that are related in

functionality. The uppermost class shown in each box is the central class for each of the

loosely knit groupings shown. The arrows in Figure 1 represent the flow of logic as the

game unfolds. After the actions headed by the CourseAndSpeed class are completed, the

Deployment class is instantiated. The Deployment class and its related classes comprise

the discrete event simulation portion of the wargame. The discrete event simulation has

significant interactions with the DataRepository, ArrivalProcess, and Animate groups

during game play.

In addition to the broad groupings shown, the classes are divided into Java

packages by functional area. Appendix A provides a more detailed description of

 5

OplogWelcome AfterWelcome

Battle
Co

En

Fri Surfac
Ge

A
AirT

P

S
T

Fire
Fi

UnrepSummaryPanel
PlacedRASRequestsPanel

CheckUnrepSchedule
ShipRASRequestsPanel

OrderListener
DeleteUnrepRequest

UnrepScheduler
ShowOrderPanel

Data

Figure 1. Wargame Programming Flow

 6

IntelSummary
SwingWorker

PleaseWaitPanel
LogProgressBar

DatabaseInfo
WeaponsData
ShipHashMap

CLFPanel
Repository

Deployment

Controller
Ship

GroupMoverManager
nstantRateMediator

EnemyBase
emyBaseGenerator

FriendlyBase
endlyBaseGenerator
WeaponsStatus

LogStatus
LogRates

MoverHashMap
CourseAndSpeed
CASGroupSetter

CasUnitSetter
CASListener
SliderListener
ArrivalProcess
SurfaceThreat

eThreatCourseGenerator
nRandomDBTargets
ThreatDataGetter

AirThreat
irThreatGenerator
hreatCourseGenerator
athMoverManager
WeaponsPanel
Animate
Pinger

ControlPanel
ScorePanel
imTimePanel
heLogPanel
CLFStatus
SelectActionsPanel
SelectActionsListener
reResultsPanel
MoreCourseAndSpeed
MoreCasGroupSetter

MoreCourseandSpeedUnits
MoreCasUnitSetter

individual classes. All classes are contained in the package oplog or in subpackages such

as oplog.database for databases and related classes, oplog.gui for classes used to make

graphical user interfaces, and oplog.smd for classes used by the discrete event simulation.

Classes not discussed in the appendix are drawn from java, javax, and simkit packages.

The details noted here about each class are considerably more in depth than those found

in the Javadocs.

All program code and applicable Javadocs are included in some electronic

versions of this thesis. Some classes that are not used in the current version of the

Operational Logistics Wargame have also been included in those versions as a basis for

future development.

B. DATABASE DEVELOPMENT
The databases used in the Operational Logistics Wargame were implemented in

Microsoft Access but could have been in any SQL-compliant database with a JDBC

driver. The databases were designed specifically for this wargame and contain

information about forces assigned to both the Carrier Battle Group and enemy fleet.

CVBG data is actual real-world ship characteristics.

1. CVBG Database

 7

The Carrier Battle Group database, named oplog.mdb, contains current

information on all U.S. Navy surface ships (both USS and USNS fleet assets) as found in

Jane’s Online and other unclassified sources. Information about each ship, such as its

maximum speed, available weapons, sensors, and logistical capacities are based strictly

on the ship’s class and cross-referenced throughout the database by ship class. Minor

differences between ships within a class are disregarded. Consumption of logistical items

(except fuel) is based on typical Naval Logistics Planning Factors which, like

consumption rates of other military branches, are calculated per person onboard per day.

Propulsion fuel is calculated using unclassified fuel consumption equations while

aviation fuel is calculated using a basic daily rate. The CVBG in the Operational

Logistics Wargame does not yet have the ability to launch aircraft. Therefore, aviation

fuel consumption is a basic daily rate rather than a basic daily rate plus a rate for number

of sorties. The current version of the database contains several tables marked

“(original)”. Those tables are intended for use when the wargame can be run in a larger

Java Virtual Machine. Tables by the same name but not marked “(original)” are scaled

down versions.

The organization of the database centers around the ships listed on the CVBG

table (Table1). The “Ship” names, “Class” types and coordinates are all essential to the

Operational Logistics Wargame. “Ship Hull Number” is not currently used, and

“Number” is used to organize the data in the order desired for reports.

Ship Ship Hull Number Class XCoord YCoord Number
George Washington CVN 73 Nimitz 40 40 1
Bunker Hill CG 52 Ticonderoga 60 60 2
Gettysburg CG 64 Ticonderoga 0 40 3
Nicholson DD 982 Spruance 20 0 4
Cole DDG 67 Arleigh Burke 60 20 5
Rueben James FFG 57 Perry 0 20 6
Halyburton FFG 40 Perry 20 60 7
Blue Ridge LCC 19 Blue Ridge 40 80 8
Supply AOE 6 Supply 0 0 9

Table 1. CVBG Table

 Nearly all data throughout the database is sourced using a ship’s type. Using the

class type, information about any ship in the CVBG can be accessed from the other

tables. A table containing all U.S. Navy combatant ships and CLF ships, not including

Amphibious ships, is included in the oplog database for reference (not shown). The

TypeData Table (Table 2) provides a variety of basic data concerning ship class types.

F76 fuel curve factors are included in the TypeData Table. The TypeSensors Table

(Table 3) contains the various air and surface sensors found on each type of ship. The

Sensors Table (Table 4) contains information specific to each sensor.

 8

 Class Mission Max
Speed

Staying
Power Pers F76p2 F76p1 F76p0 Notes

Kitty Hawk carrier 32 5 5480 32.6666 -8937.6 10865.9 Fuel rate in
KGal/hr

Kennedy carrier 32 5 5480 32.6666 -8937.7 10865.9 capacity is bbls
Enterprise carrier 33 5 5765 0 0 1 convert in code
Nimitz carrier 30 5 5930 0 0 1
Ticonderoga combat 30 4 358 37.4831 -1429.04 2215.39
Spruance combat 33 4 339 27.0667 -1812.92 3097.97
Arleigh
Burke

combat 32 4 346 51.5925 -764.433 1379.62
Arleigh
Burke IIA

combat 31 4 344 51.5925 -764.433 1379.62
Perry combat 29 4 200 51.8843 -545.716 951.117
Blue Ridge combat 23 4 1095 112.9410 92.0583 699.553
Austin combat 21 3 666 95.4647 -1124.43 1566.79
Sacramento station 26 2 601 12.2579 -27553.4 27821.2
Supply station 26 2 531 -25.7866 12117.20 -12232.3
Kilauea shuttle 20 1 149 -8.86595 16343.7 -16150.3
Mars shuttle 20 1 176 55.5118 -1471.66 1727.46
Sirius shuttle 18 1 175 55.5118 -1471.66 1727.46 Sources:

Schrady 1996
Kaiser shuttle 20 1 104 -44.9642 4834.54 -4614.81 Janes Online

2001

Table 2. TypeData Table

 9

Class Air Surface

 Kitty Hawk SPS48E SPS67
Kennedy SPS48E SPS67
Enterprise SPS48E SPS67
Nimitz SPS48E SPS67V1
Ticonderoga SPY1B SPS55
Spruance SPS40B SPS55
Arleigh
Burke

SPY1D SPS67V3

Arleigh
Burke IIA

SPY1D SPS67V3

Perry SPS49V5 SPS55
Blue Ridge SPS48C SPS65V1
Austin SPS48C SPS10F
Sacramento SPS40E SPS10F
Supply MK23 SPS67
Kilauea GenAir GenNav
Mars GenAir GenNav
Sirius GenAir GenNav
Kaiser GenAir GenNav

Table 3. TypeSensors Table

Radar Range
SPS48E 220
SPY1B 200
SPS40B 175
SPY1D 200
SPS49V5 250
SPS48C 220
SPS40E 175
MK23 25
SPS67 56
SPS67V1 56
SPS55 50
SPS67V3 56
SPS10F 54
SPS65V1 55
GenAir 25
GenNav 50

Table 4. Sensors Table

 10

The TypeWeapons Table (Table 5) contains information about the weapons on

each type of ship. Note the use of “none” rather than “0” for ships that do not carry

certain weapons. To simplify inventory coding and calculations throughout the

Operational Logistics Wargame, weapons that typically fire multiple projectiles in a

single round are considered to have fired only one unit per firing event. The rates used to

convert multiple projectile rounds are noted. Information about each weapon is found in

the Weapons Table (Table 6). In the current version of the Operational Logistics

Wargame, the use of published unclassified weapon ranges by the CVBG would give the

advantage to the enemy since enemy damage to CVBG assets is not based on weapons

range. If a Surface Threat or Air Threat is within detection range of a CVBG asset and

that asset is detected, a weapon with unlimited range is fired. To ensure the enemy does

not have an unfair advantage, some ranges of CVBG weapons are increased as

compensation. Both real and adjusted ranges are provided in the Weapons Table.

The oplog database also contains extensive information about the logistical

aspects of the CVBG. Where necessary, the data is cross-referenced by class type. The

GPF Table (Table 7) provides Navy General Planning Factors for consumption of

Logistical Items. The TypeLogistics Table (Table 8) is similar to the TypeWeapons table

and provides information about each type of ship’s capacity for certain logistical items.

Fuel is referenced in barrels and other logistical items are referenced in pounds.

 The final table of the oplog database is the CLFcapacity Table (Table 9). As the

name implies, this table contains information about the storage capacity on board the

different classes of CLF ships.

 11

Class Harpoon Tomahawk SeaSparrow Sea Sparrow firing
rate

Sea Sparrow actual
capacity

Kitty Hawk none none 6 4 24
Kennedy none none 6 4 24

Enterprise none none 6 4 24
Nimitz none none 6 4 24

Ticonderoga 24 32 6
Spruance 24 32 2 4 8

Arleigh Burke 24 32 None
Arleigh Burke

IIA 24 32 None

Perry 24 none None
Blue Ridge none none 4 4 16

Austin none none 4 4 16
Sacramento none none 6 4 24

Supply none none 6 4 24
Kilauea none none None

Mars none none None

Kaiser none none None Source: TACLOG 1996

Table 5. TypeWeapons Table, partial data only

Item Range RealRange Purpose Weight Launch
weight Notes

Harpoon 72 72 ASUW 2250 1500 All include 50% pack weight
SeaSparrow 7 7 PD 3036 506 SS weight per 4 rounds
Tomahawk 500 722 Strike 4791 3194 range to allow for screen size

CIWS 5 5 PD 990 0.22 CIWS: weight per 3000 rounds
G5in 50 13 Strike 10500 70 5in weight per 100 rounds
G3in 6 6 PD 4050 27 3 in weight per 100 rounds

SM2MR 200 42 AAW 2337 1558 range to allow attack on air
when detected

SM1MR 200 22 AAW 2035 1357 SRBOC weight per 10 rounds
SRBOC 5 5 PD 75 50 Sources: TACLOG 1996,

Jane's Online 2001

Table 6. Weapons Table

 12

Item Rate Notes
Basic_Class_II 11.37
Routine_Spares .64 Does not incude CASREP major items
Fresh_Produce 1.0 subdivided from 2.42 original frozen rate
Medical_Consumables .05
F44 5.66 -6.11 + 2.31*numSorties in Kgal
Frozen_Goods 1.42 F44 rate false since no sorties in game
Soda .63
Unit_Issue_Clothing .09
Dry_Provisions 3.2 Source: Long 1992

Table 7. General Planning Factors

Class F76 F44 Dry_Provisions Fresh_Produce Frozen_Goods
Kitty Hawk 47619 36000 360000 115000 160000
Kennedy 0 57000 360000 115000 160000
Enterprise 11904 57000 380000 121000 172000
Nimitz 0 57000 390000 124500 177000
Ticonderoga 12000 500 24000 7500 10700
Spruance 12000 500 22200 7100 10100
Arleigh Burke 12000 500 22700 7300 10300
Arleigh Burke IIA 12000 500 22900 7300 10400
Perry 4800 500 13200 4200 6000
Blue Ridge 12000 1190 74000 23000 33000
Austin 12000 500 45000 14000 20000
Sacramento 12000 500 40000 13000 18000
Supply 12000 500 34800 11000 15800
Kilauea 16000 500 97800 3100 4443
Mars 12000 500 11700 3700 5300
Sirius 12000 500 11400 3700 5200
Kaiser 12000 500 6800 2200 3100

Table 8. TypeLogistics Table, partial data only

 13

Class Fuel Weapons Stores Weaps (tons) Stores (tons) Notes
Sacramento 177000 4300000 1500000 2150 750 fuel in bbls
Supply 156000 3600000 1300000 1800 650 weapons in lbs
Kilauea 0 3400000 0 1700 0 stores in lbs
Mars 0 0 7850000 0 3925 42 gal per bbl
Sirius 0 0 5786000 0 2893
Kaiser 180000 0 0 0 0 Source: CNO

Table 9. CLFcapacity Table

2. Threat Database
The threat database contains only one table (Table 10). This table includes only

basic surface threat names and speeds. Other ship characteristics, such as surface search

radar range are written directly into the JAVA code. Currently, threat air assets all have

the same characteristics. Threat air characteristics are also written directly into the JAVA

code.

Type Number Speed
Cruiser1 1 20
Cruiser2 2 18
Destroyer1 3 17
Destroyer2 4 25
Carrier1 5 16
Carrier2 6 32
Patrol1 7 8
Patrol2 8 10
Patrol3 9 12
Patrol4 10 15
Frigate1 11 22
Frigate2 12 21
Frigate3 13 14
Cruiser3 14 23

Table 10. Threat Ships Table

 14

C. METHODOLOGY SUMMARY
The Operational Logistics Wargame is a combat model with a solid Operations

Research foundation and is designed for Operational Logistics students. It is expandable

and configurable. Transparent to the user, the wargame uses the most up-to-date

modeling and simulation techniques with its discrete event simulation and stochastic

processes. The external database provides great flexibility in tailoring the wargame for

specific classroom environments. The remaining chapters of this thesis give detailed

guidance for players and referees of the wargame as well as recommendations for future

enhancements.

 15

THIS PAGE INTENTIONALLY LEFT BLANK

 16

III. PLAYER MANUAL

Operational Logistics Wargame

Player Manual

Figure 2. Courtesy of Professor D. A. Schrady

Amateurs discuss strategy,
Professionals study logistics

 17

A. OPERATIONAL LOGISTICS WARGAME SUMMARY
The main goal of the player is to accumulate as many points as possible in either a

given time or until one side’s fleet is destroyed, as specified by the referee.

After the game begins, the player may perform one or more of several actions. These

actions include: firing weapons, ordering logistical items, adding new coordinates to a

ship’s track, changing a ship’s scheduled track, and quitting the game. Points (and

penalties) are accumulated through offensive actions, defensive capabilities and logistics

events.

1. Offense
 To simplify game play, any weapon not designated Point Defense may fire at any

threat target. No distinction is made among ASUW, AAW, or Strike weapons as to

usage. Destructive power of specific weapons is not taken into account. From the

beginning of game play, players are aware of the location of threat ports and bases. The

player may fire weapons at threat ports and bases during any pause. To discourage the

player from indiscriminately firing weapon without regard to range, if a weapon is fired

at a target that is out of range, a penalty will be accrued (and the weapon will still be

expended). If in range, a random number will determine whether the base or port is

damaged, destroyed, or missed based on the respective probabilities. In the event of

damage without destruction, Staying Power is decremented. Points are given when the

enemy is damaged or destroyed. Penalties accrue when distance to target is outside a

fired weapon’s range.

2. Enemy Detection
 Air Threats and Surface Threats are only shown to the player if detected by the

respective air or surface radar. Radar ranges of the CVBG assets are those found in

Jane’s Online. Detection of a threat contact that is in range of the radar is determined

stochastically. Upon detection, the player is notified. Ships that have no offensive power

can report detection of threats but have no means of eliminating the threat.

3. Defense

Firing of defensive weapons is not under the control of the player in this game.

However, it is the player’s responsibility to ensure that an adequate supply of Point

Defense weapons are onboard the ships at all times. It is also the player’s responsibility
 18

to ensure that Battle Group formation decisions are made with due regard to both

offensive and defensive actions. Point Defense weapons are automatically consumed

whenever that ship is attacked and ships with self-defense capabilities have higher

assigned Staying Power than those without. The player is notified when any attack is

made by a threat asset. Attack by a threat asset may result in damage, destruction, or no

damage at all to the Battle Group unit.

Detection of CVBG assets by enemy air and surface threats is determined in the

same stochastic manner as that of CVBG detection of threats, when within radar range.

If the enemy detects and fires upon a CVBG asset, there is no guarantee that the threat

will subsequently be detected by CVBG assets. Threat bases have no offensive

capability. Penalties are accrued when ships are damaged or destroyed. Ships are

repaired to full Staying Power during port visits.

4. Logistics

a. Logistics Items
For realism, at game start each ship has between 75 and 100 percent of its

capacity of each logistical item including weapons as determined by a random number

draw. Logistical items not including fuel or weapons are consumed on a per-man per-ship

per-day basis. Fuel and weapons consumption are based on actual usage. All logistical

items and weapons (except Tomahawk and Harpoon) can be replenished through

underway replenishment with the Combat Logistics Force (CLF) ship and port visits.

Tomahawk and Harpoon may only be replenished during port visits. In the Operational

Logistics Wargame, all other weapons can be replenished at sea.

b. Logistics Units
Fuel capacity throughout the game is in barrels. Stores capacity is in

pounds. Weapons are referenced using both weight and number of units. Each ship can

only carry a specific number of each type of weapon but the Combat Logistics Force

capacity is limited by total weapons weight not total number of weapon types or units.

Therefore, weapons are ordered by weight with both number of units weight shown.

When a weapon is fired in rounds, 1 unit is the equivalent of 1 round. For example, 1

unit of 5 in gun ammunition is equivalent to 100 projectiles of 5 in gun ammunition.

 19

c. Replenishment Requests
 To conduct underway replenishment with the station ship, logistical items

must first be ordered from the CLF ship. In the basic game, the only CLF ship used is a

“station” ship. The station ship capacity is based on published capacities for fuel,

weapons, and stores. As with each ship’s supply status at game start, the station ship

starts the game with between 75 and 100 percent of its capacity as determined by a

random number draw. Items may be ordered during any game pause and are assigned a

priority (either routine or urgent) as the player desires. Ordered items assigned a routine

priority are filled in due course. Routine unrep orders may or may not arrive during the

next unrep, depending upon previously submitted orders for all ships. Orders placed with

an urgent priority will normally be received during the next unrep. Penalties accrue for

use of urgent priority. Penalties also accrue when inventory of a specific item falls below

40 percent. More severe penalties accrue if inventory falls to zero. Points are given for

ships maintaining inventory above 50 percent between replenishments. Items ‘received’

during unrep in excess of the ship’s capacity are not added to the inventory but do not

accrue a penalty. At this time, there is no provision for canceling an order manually. Port

visits result in cancellation of all outstanding unrep requests for that ship. Unreps occur

automatically when the CLF ship is within range of a ship for which it has orders. There

is no game delay during underway replenishment. Detection range for underway

replenishment is currently set at 30 miles. Once the CLF ship’s capacity is exhausted, it

must be ordered back to a port for re-supply. Upon reaching port, the CLF ship’s

capacity is filled based on existing orders in a first-in first-out manner (with regard to

priority). There is no delay of game for the CLF ship while it is in port.

d. Port Visits

 20

 Port visits occur whenever a ship is within range of a friendly port.

Detection range for port visits is currently set at 30 miles. Since real-life port visits

detract from a ship’s ability to conduct its combat mission, in the Operational Logistics

Wargame, penalties accrue for any port visit by a ship that is not a CLF ship. During a

port visit, all logistical items and weapons including Tomahawk and Harpoon are

replenished. Any ship that has been damaged is repaired to full operating status. There is

no delay of game for a ship during the port visit.

B. GAME PLAY START-UP

1. Installation
The current version of Simkit and Java that are being run in the Operations

Research Department at the Naval Postgraduate School must be installed on the computer

where the game is to be played. A JDBC driver must also be installed for both the Oplog

database and the threat database. In a Microsoft Windows environment, the driver can be

established by installing a Microsoft Access driver in the ODBC Data Source panel and

using the JDBC-ODBC bridge that ships with the Java Development Kit. The Player

DSN name that refers to the Oplog database must be “wargame”. The Player DSN name

that refers to the ThreatDB database must be “wargameThreat”.

2. Initialization

The Operational Logistics Wargame begins when the player inputs the applicable

code on a Dos command line or otherwise executes the main method of the program.

Running the wargame in a JAVA IDE is not necessary and is not recommended.

Command line code to start the game will typically be:

“java oplog.gui.OplogWelcome”

C. WELCOME SCREEN

Upon game initialization, the player can select to start a new game or abort the

game as shown in Figure 3. Throughout the game, whenever possible, buttons have

keyboard mnemonics assigned. Buttons with shortcut keys use the underlined letter as

the assigned mnemonic.

 21

Figure 3. Operational Logistics Wargame Panel

D. PLEASE WAIT PANEL
While the game is loading, when short delays are expected to occur, a window

noting that a delay will occur appears (Figure 4):

Figure 4. Please Wait Panel

E. INTELLIGENCE SUMMARY
After selecting a new game, the player is provided information concerning the

game. This information includes an intelligence summary, composition of the Battle

Group and CLF ship status, logistics status, and weapons status. The player may review

the displayed data at leisure. When ready to proceed, the player must decide whether or

 22

not to remain in port before deployment to replenish all supplies and weapons or to

deploy immediately with the amounts onboard as indicated in the Logistics Status and

Weapons Status tabs. Should the player decide to remain in port for replenishment, a

penalty will be assessed. After the presail decision is made, the player may click the

Click this button when ready to proceed button at any time. The Intelligence Summary

data are presented in Tabbed Pane format.

1. Intelligence Summary Tab
The first tab of the Intelligence Summary Panel is the Intelligence Summary Tab

(Figure 5). This pane is a textual description of the intelligence scenario and does not

require or allow any input from the player.

Figure 5. Intelligence Summary Tab

 23

2. Game Rules Tab

The second tab of the Intelligence Summary Pane is Game Rules Tab (Figure 6). This

tab is a textual description of the most important rules of the Operational Logistics

Wargame. This tab does not need or allow input from the player.

Figure 6. Game Rules Tab

3. Battle Group Summary Tab
The Battle Group Summary Tab (Figure 7) is the third tab of the Intelligence

Summary Panel. This tab provides pertinent information to the player concerning the

Battle Group’s composition. All ships in the Battle Group are listed along with their

main missions, maximum speeds, and number of personnel. This panel also displays the

starting status of the Combat Logistics Force ship. The total amount of fuel, stores, and

weapons that the CLF ship has onboard at game start is a random amount between 75%

and 100% of its capacity for each broad type. This tab does not require or allow input

from the player.

 24

Figure 7. Battle Group Summary Tab

4. Current Logistics Status Tab
The fourth tab of the Intelligence Summary panel is the Current Logistics Tab

(Figure 8). This tab has a separate tab panel for each ship in the CVBG. The individual

ship tabs show the starting status of each logistical item that the ship has onboard. The

starting status is between 75% and 100% of the ship’s capacity. This tab does not require

or allow input from the player.

 25

Figure 8. Current Logistics Status Tab

5. Current Weapons Status Tab
The last informational tab of the Intelligence Summary Panel is the Current

Weapons Status Tab (Figure 9). This tab has a separate tab panel for each ship in the

CVBG. The individual ship tabs show the starting status of each weapon that the ship

has onboard. The starting status is between 75% and 100% of the ship’s capacity. This

tab does not require or allow input from the player.

 26

Figure 9. Current Weapons Status Tab

6. PreSail Decisions
Prior to deployment, the player must decide whether to delay sailing in order to

top off all consumables or to deploy immediately. Should the player decide to remain in

port, a penalty is accessed. (See the penalties section for more information on game

penalties.) The Presail Decisions tab (Figure 10) allows the player to decide which

option to pick. The player selects the button corresponding to the presail decision made.

A specific decision must be made by the player or the game will not proceed. After

making a decision, the player should click Click this button when ready to proceed.

 27

Figure 10. PreSail Decisions Tab

F. SETTING COURSE AND SPEED
To begin the deployment, the player assigns the ships to sail together as a fleet or

individually. Some ships may be selected to sail in formation while the remainder sail

individually. Among other things, this option allows the CLF ship to sail to port, with or

without escort, while the fleet sails toward the objective. Otherwise, the CLF ship will be

unable to do underway replenishment once its initial stores run out. The player selects

the ships’ initial courses and speeds and the deployment begins.

1. Course and Speed
In the first graphical user interface of this section, entitled Course and Speed

(Figure 11), the player should click on the check box of any ship that is to be assigned to

sail in the Battle Group formation. In the Course and Speed selection panel, if the player

wants to select only ships to sail individually, do not select and check boxes and click the

Start button. After choosing the Battle Group ships and clicking the Start button, the next

 28

panel opens. Note: ships may be added or removed from the main Battle Group during

any pause of game play. Additionally, ships may be assigned to sail in multiple, smaller

groups as desired during game play.

Figure 11. Course and Speed Panel

2. Course and Speeds for the CVBG (by group)

 29

After proceeding from the previous panel, the Course and Speeds for the CVBG

(by group) panel opens. (Figure 12) In this panel the player selects a speed for the Battle

Group by moving the speed slider to the desired speed. The maximum possible speed is

the lowest maximum speed of all ships in the intended group. The player also selects the

Battle Group’s initial course from Homeport to any desired location. The course is

selected by clicking the Start/reset coordinates button then clicking significant waypoints

along the desired course. The selected track is NOT shown on the screen. However,

once a course has been chosen, clicking on the Print coordinates button prints the

selected waypoints on a separate output screen. (Figure 13) Clicking the Print

Coordinates button also enables the PROCEED button. The coordinate system used is

the standard JAVA coordinate system where the origin is the top left corner of the

designated window and x increases to the right with y increasing down. If the

coordinates displayed are satisfactory, the player should click PROCEED.

Figure 12. Course and Speeds for the CVBG (by group) Panel. After Ref. National
Geographic.

Figure 13. Sample CAS Group Output

 30

Otherwise, the player may click the Start/reset coordinates button to try again.

The basic version of this game does not differentiate between land and water. So, the

player must take care to ensure that the ships do not sail across land. A future

enhancement of will include a land-avoidance algorithm.

Note: All map backgrounds in the Operational Logistics Wargame and depicted in

this document were obtained from the National Geographic Website

(www.nationalgeographic.com) and have been altered by the author. All icons used in

the Operational Logistics Wargame and depicted in this document were obtained from a

variety of sources including theses by Lt J.R. Sterba and Lt A.W. Troxel as well as Web

Clip Art Website (www.webclipart.about.com) and Air War College Website

(www.au.af.mil/au/cpd/cpdgate/clip_af.htm) . All icons have been altered.

3. Course and Speeds for Individual Ships

Ships shown on individual tabs in the Course and Speeds for individual ships

panel (Figure 14)) are all of the remaining ships of the Battle Group that were not

selected to sail in formation. This panel is set up in much the same fashion as the Course

and Speeds for the CVBG (by group) panel. However, the PROCEED button is not

enabled until an individual course has been set for each ship shown. The course or speed

for any ship listed may be changed at any time prior to clicking PROCEED. The selected

coordinates are also printed to the output screen. (Figure 15) When the player clicks

PROCEED, additional database information is drawn during a short wait and game play

begins.

 31

http://www.nationalgeographic.com/
http://www.webclipart.about.com/
http://www.au.af.mil/au/cpd/cpdgate/clip_af.htm

Figure 14. Course and Speeds for individual ships Panel. After Ref. National
Geographic.

Figure 15. Sample Individual Ship CAS Output

 32

G. ANIMATION
The Animation Frame has three main sections: The Animation Tab, the Actions

Tab, and the Control Panel.

1. Animation Tab
The Animation Tab (Figure 16) is an animated graphical display of the game as it

progresses. The current map is displayed with existing friendly and enemy bases. As the

CVBG’s ships sail at various speeds and courses, their progress can be seen on the

screen. Ships sailing in formation will normally appear as one unit and as a single icon

while the ships sailing individually will be distinguishable. If a surface threat or air threat

is detected by CVBG sensors, the threat unit’s icon is also displayed at the appropriate

coordinates for the duration of its detection. If any friendly or enemy unit is destroyed,

the icon for that unit is removed from the display. The Animation Tab does not require

or allow any input from the player.

Figure 16. Animation Tab. After Ref. National Geographic.

 33

2. Actions Tab
The primary GUI of the Operational Logistics Wargame is the Actions Tab. This

tab provides a multitude of information to the player and allows the player to take action.

The wargame is designed to pause its simulation and animation whenever certain events

occur that warrant notice to the player. Events that cause the simulation to pause

automatically include:

- First detection of enemy air or surface threat (multiple detections are
simply logged).

- First detection of threat bases and ports within range of surface radar.
- Loss of contact of a threat by all CVBG assets.
- Damage or destruction of an enemy by the CVBG.
- Damage or destruction of a CVBG asset by the enemy.
- Port visits.
- Underway replenishments.
- Ships reaching the end of scheduled tracks.

a. Reason For Auto-Pause Panel

The uppermost panel seen on the Actions Tab is the Reason for auto-pause

panel (Figure 17). Whenever the game is paused automatically, the event that caused the

pause is noted in this panel. This panel does not require or allow player input.

b. Score Panel
The total accumulation of all penalty and bonus points is noted in the

Score panel (Figure 17). This panel is updated at every pause. This panel does not

require or allow player input.

c. Sim Time Panel
The simulation time at the instance of the pause is shown in the Sim Time

panel (Figure 17). Simulation time is shown in hours. This panel does not require or

allow player input.

 34

Figure 17. Actions Tab, View 1

d. Game Summary Log Panel
The Game Summary Log panel (Figure 17) contains a list of all pertinent

events that have occurred during the Operational Logistics Wargame and the time the

event occurred. In addition to all auto-pause events, this log contains a listing of all

multiple detections and undetections by CVBG assets. This log does not contain any

events, significant or not, that are not known to the player. For example, a surface threat

generated by the wargame would not be noted on the log unless detected by the CVBG.

This panel does not require or allow player input.

e. Select Actions Panel
The most important player input panel is the Select Actions panel (Figure

17). The Select Actions panel allows the player to control various aspects of the game.

Actions that the player can select to perform include:

 35

- Firing weapons,
- Review and place unrep requests,
- Change the course of a ship or ships,
- Add waypoints to the end of a course for a ship or ships,
- Save and Exit the game. (This feature is not functional.)

The player selects which action to take by clicking on the appropriate radio button for the

selection then clicking the Take Action button. See individual sections of this manual for

detailed descriptions of each of these selections.

f. CLF Status Panel
The CLF Status panel (Figure 18) is similar to the CLF status displayed before

game start. It displays the current status of the Combat Logistics Force ship. The total

amount of fuel, stores, and weapons that the CLF ship has onboard at the time of the

simulation pause is shown here. This panel is updated at every game pause. This tab

does not require or allow input from the player.

Figure 18. Actions Tab, View 2

 36

g. Logistics Status Panel
The Logistics Status panel (Figure 19) is also similar to its counterpart that

was provided at game start. In addition to previously described information, this panel

shows the current Staying Power of the indicated vessel. This panel is updated at every

game pause. This panel does not require or allow player input.

Figure 19. Actions Tab, View 3

h. Weapons Status Panel

The Weapons Status panel (Figure 20) is similar to its counterpart that was

provided at game start. This panel does not require or allow player input and is updated

at every game pause.

 37

Figure 20. Actions Tab, View 4

3. Control Panel
The Control Panel (seen at the top of Figure 20) provides the player very basic

control over the progress of the game and subsequent animation. Each button on the

Control Panel has a tool tip that pops up when the cursor is moved over the face of the

button. The player can choose to Stop the animation portion of wargame which stops the

animation screen from refreshing. The player can Pause the animation and the

underlying simulation. The player can Resume the animation and simulation. Or, the

player can Exit the wargame altogether. The current version of the wargame does not

have the capability to save a game in progress.

 38

H. PANELS SPAWNED BY SELECT ACTIONS PANEL
As previously discussed, there are several actions that can be accomplished from

the Select Actions panel on the Action tab of the Animation Window.

1. Fire Weapons Panel
The Fire Weapons panel (Figure 21) allows the player to take offensive action

against surface threats, air threats, and enemy bases or ports. The left side of the panel

lists all Battle Group assets with offensive capabilities and their current positions. A ship

that normally has the capability to fire a specific weapon but does not have any onboard

at that time shows a ZERO inventory level for that weapon. On the right side of the

panel, all existing enemy bases or ports and all detected surface or air threats are

displayed. The current position and staying power of each target are noted.

The current version of the Operational Logistics Wargame does not discriminate

between offensive weapon types. Any weapon shown on the Fire Weapons panel may

fire at any target. Due to a variety of reasons, the standard range of several of the

weapons have been modified for this wargame. The range currently assigned to each

offensive weapon is shown in Table 11. It is the player’s responsibility to determine if

specific weapons on a platform are in range of a specific target.

 39

Figure 21. Fire Weapons Panel

 Weapon Range
Harpoon 72

Tomahawk 500
CIWS 5
G5in 50

SM2MR 200
SM1MR 200

Table 11. Oplog Weapon Ranges

Each firing action fires 1 unit of the indicated weapon at the chosen target. The

player selects a weapon to fire by clicking on the radio button next to the desired weapon.

The player selects the intended target in a similar manner. After both a weapon and a

target are chosen, the player should click Fire. Through generation of a random number,

a determination is made as to which of several results occur when a weapon is fired.
 40

Results of weapons firing include: destruction of a target due to one well-placed shot or

due to reduction of the Staying Power to zero, damage of a target and reduction of the

target’s staying power by 1, a missed shot or a shot that hit the target but did not damage

it, a shot that was not in range of the target and subsequent penalty, or an attempt was

made to fire a weapon that is out of stock and subsequent penalty. A Battle Damage

Assessment panel appears to report the results of each weapon firing. Examples of each

of the possible weapons firing results are shown as Figure 22 thru Figure 27. After each

weapons fire, the Fire Weapons panel is updated to reflect the new target and weapons

inventory status. The player may repeat the fire weapons process as many times as

desired. When done, the player should click Done to terminate the panel and return to the

main Action tab.

Figure 22. BDA Report: Lucky Shot

Figure 23. BDA Report: Destruction

Figure 24. BDA Report: Damage

Figure 25. BDA Report: Undamaged

 41

Figure 26. BDA Report: Weapon Out of Range Penalty

Figure 27. BDA Report: Zero Inventory Penalty

2. Unrep Orders Panel
The Unrep Orders Panel (Figure 28) enables the player to place unrep requests

and to review details about pending underway replenishment orders. In this version of

the Operational Logistics Wargame, destruction of the CLF ship does not disable the

unrep request panel; but, the panel is useless. The right side of the panel contains a list of

all existing ships in the Battle Group, less CLF ships. The player may place an unrep

request for any of the ships shown by clicking on the appropriate radio button. The left

side of the panel lists all pending underway replenishment requests. The requests are

grouped by supply class: fuel, weapons, or stores. With each class, the requests are

listed in First-in, First-out (FIFO) order by priority. The player may review the details of

a specific order by clicking on the appropriate radio button. More details on these

options are provided below.

 42

Figure 28. Unrep Orders Panel

a. Place an Order
After clicking a specific ship’s button on the Unrep orders panel to order

supplies and weapons, the Placing an Unrep request panel is generated (Figure 29). This

panel contains a slider for all fuel, weapons, and stores onboard the specified ship

provided the item is available via underway replenishment. Harpoon and Tomahawk are

not shown because they are not replenished at sea. The maximum value of each item’s

slider is the maximum capacity on the ship. The sliders for weapons show both capacity

by weight and number of units, as previously discussed. The player orders a specific

item by moving the slider to the desired amount. After selecting all items to be ordered,

the player should select a priority for the order (urgent or routine). Use of urgent priority

incurs a penalty. Once all items are selected, click the Place the Order button. Any item

with an amount of zero is not ordered. If all sliders are set to zero when the Place the

Order button is clicked, no order will be recorded. The player may use the Exit icon to

exit the screen without terminating the game.

 43

Figure 29. Placing an UNREP request Panel

 44

b. The Unrep Schedule
At frequent intervals throughout the wargame, the unrep schedule is

reviewed and modified as necessary. When under review, the request list is compared to

a clone of the CLF ship’s onboard inventory for that commodity. If the inventory clone

has the inventory to fill the first order, that order is scheduled to be filled, and the clone is

decremented by the first order’s total amount. These steps are repeated until an order

amount is greater than the remaining value of the clone. At that point the order under

review is scheduled to remain unfilled and all the

following orders on the list are also scheduled to remain unfilled.

During an underway replenishment, the schedule is checked for all orders by that

ship. Any orders scheduled to be filled are honored and the CLF inventory is reduced by

the amount of the request. The CLF inventory is always reduced by the amount of the

request, regardless of the actual amount onboard the ship. Additionally, if any orders are

denied during an unrep because it is not scheduled to be filled, the player is accessed a

penalty. So, the player should take care when placing orders since the amount ordered

determines the scheduling of unrep requests and reduces the CLF inventory without

noticeable advantage to the player.

 Once a request has been honored, the request is removed from the summary of

unrep requests. If a ship is destroyed, all of the ship’s requests are removed from the

summary. If a ship makes a port visit, all of the ship’s requests are removed from the

summary.

 45

c. Check an Order
When the player selects a radio button on the outstanding unrep requests

part of the Unrep Orders panel, a summary of the indicated order is displayed.

Information displayed includes the total weight (or barrels, for fuel) of all desired items,

the specific weight of each item, and the status of the request. The status of the request

notes whether or not an unrep request will be honored during the next underway

replenishment for that ship. Figure 30’s order is scheduled to be filled during the ship’s

next underway replenishment while Figure 31’s order is not.

Figure 30. Sample Selected Order, Scheduled

Figure 31. Sample Selected Order, Unscheduled

 46

3. Change Coordinates Panels
The Change Coordinates panels are very similar to the Course and Speed panels

seen at the beginning of the game; however, there are notable differences. The player

may exit from any of these panels at any point without terminating the game. The first

two panels of this section are similar as the original panels(Figure 32 and Figure 33). An

output panel also displays the results of course selection (not shown).

Figure 32. Change Coordinates Course and Speed Panel

 47

Figure 33. Change CoordinatesGroup Course and Speeds Panel. After Ref. National

Geographic.

After the group setting panels have been completed, another Course and Speed

ship selection panel displays (Figure 34). This panel displays the names of the ships that

were not selected to sail as a group. The player may select which ships to set course and

speed for individually by clicking the appropriate check boxes. Click Start after ship

selection. If the player does not desire to set any individual course and speeds, the player

can click Start or the Exit icon. The last panel of this section is similar to the original

panels (Figure 35). The speed slider for the individual ships is set to the ship’s current

speed. If the player does not desire to change the ship’s speed, the slider bar should not

be moved. The new coordinates are printed to an output panel (not shown).

 48

Figure 34. Change Coordinates Course and Speed Unit Selection Panel

Figure 35. Change Coordinates Unit Course and Speed Panel. After Ref. National

Geographic.

 49

4. Add Coordinates Panel
The Add Coordinates selection of the Select Actions panel results in the same

GUI’s being produced that are produced for the Change Coordinates panel. (Figure 32

thru Figure 35) The only difference between the Change Coordinates action and the Add

Coordinates action is that Change Coordinates replaces the indicated ship’s existing

scheduled Course and Speed track with the new list of waypoints. The Add Coordinates

action adds the new list of waypoints to the end of the existing scheduled Course and

Speed track.

5. Save and Exit
This option is not functional in the current version of the Operational Logistics

Wargame.

I. OTHER TOPICS

1. Bonus and Penalty Points
Bonus or penalty points are accrued for a variety of reasons throughout the

Operational Logistics Wargame. Since the goal of this wargame is to increase the

student’s understanding of Operational Logistics, logistics actions are weighted more

heavily than combat actions. To calculate inventory bonus and penalty points, the

wargame tracks the inventory on a daily basis and awards points accordingly for daily

inventory status. Bonus points increase the total score and penalty points decrease the

total score. The current point values assigned to relevant actions are shown in Table 12.

 50

Action When calculated Bonus
Value

Penalty
Value

Damage to a ship during an attack on event 1

Destruction of a ship on event 5

Port visit by any non-CLF ship on event 1

Zero inventory of specific logistic item daily, per ship 5

Zero inventory of specific weapon daily, per ship 5

> 0 & <= 40% onboard of specific logistic item daily, per ship 1

> 0 & <= 40% onboard of specific weapon daily, per ship 1

>=40% & < 50% onboard of specific logistic item daily, per ship 0 0

>=40% & < 50% onboard of specific weapon daily, per ship 0 0
>= 50% onboard of specific logistic item daily, per ship 1
>= 50% onboard of specific logistic item daily, per ship 1
Use of Urgent priority for an unrep request on event 20

Attempting unrep that is denied on event, per supply
class 1

Delaying deployment to replenish inport on event 1

Trying to fire a weapon with zero inventory on event 25

Firing a weapon not in range of target on event 5

Zero inventory of Point Defense weapon in attack on event 1

Destruction of Surface Threat on event 5
Destruction of Air Threat on event 1
Destruction of Enemy Base on event 10
Damage to Surface Threat on event 1
Damage to Enemy Base on event 1

Table 12. Bonus and Penalty Point Values

2. Surface Threats and Air Threats
Surface Threats and Air Threats are randomly generated throughout the wargame.

The threat generation processes use random number generators to determine the length of

time between threat initializations. Each surface threat and air threat is assigned a unique

identification tag when it is generated. The identification tag indicates what class of

threat it is and the time that the asset was generated. Damage to a specific threat asset

does not affect any other threat asset, including assets of the same class. The current
 51

version of the Operational Logistics Wargame allows generation of surface threats and air

threats for the duration of the simulation run, regardless of how many threat assets are

damaged or destroyed. Threat assets always fire weapons when detecting Battle Group

assets. Threat assets do not have a specific fire power but fire only once per Battle Group

target per detection.

3. Scheduling Port Visits and Underway Replenishments
The current version of the Operational Logistics Wargame does not have a

method to specifically schedule a port visit or underway replenishment. To make a port

visit, the player should generate a waypoint near the desired port for the desired ship(s) in

the Change Coordinates or Add Coordinates panel. To schedule an underway

replenishment, the CLF ship and the desired recipients should be scheduled to sail along

several waypoints as a group using the Change Coordinates panel.

 52

IV. REFEREE MANUAL

 By using an external database for configuration, the Operational Logistics

Wargame structure allows the referee considerable control over the wargame. With basic

knowledge of the Java programming language, the referee has control over virtually

every aspect of game play.

A. DATABASE CONTROL
The referee may assign specific ships to the wargame’s fleet by making changes

as desired to the “CVBG” table. Such changes may include increasing or decreasing the

size of the Battle Group or the addition of shuttle ships to the fleet. The default CVBG

table has only a single CLF ship which performs the role of both a station ship and a

shuttle ship. The CVBG table also includes the starting position of the assigned ships.

Other tables in the database are also easily modified to change details such as ship

logistic capacities, logistics items, weapon capacities, and sensor data. The referee

should take care to ensure that any changes made to the database retain compliance with

JAVA and SQL programming rules and that changes are made throughout the database.

For example, changes to a specific weapon’s name should be made in both the

“TypeWeapons” table and the “Weapons” table. See the Methodology Chapter for more

information on the database design. Each ship in the Battle Group is assigned a Staying

Power value. For this wargame, this value depends not only upon a realistic staying

power for that type of ship but also the defensive value (i.e. whether or not the ship has

defensive weapons).

B. JAVA CODE CONTROL
 With minimal knowledge of the JAVA programming language, the referee may

also make changes to numerous other parameters of the game.

1. Maps, Bases, and Coordinate System
Any appropriate jpeg file may be used as the background map provided it is

renamed to match that noted in specific JAVA classes. However, some coordinates are

hardwired into the program and are based on the default jpeg file’s geography.

Therefore, if the background map is changed, those coordinates may require modification

 53

too. Note that the coordinate system of the game is that used by JAVA. The top left

corner of the map is the origin with horizontal positions (x) increasing to the right and

vertical positions (y) increasing downward. (Use of the JAVA coordinate system

prompted the drastic decrease in range of Tomahawk.)

 If the map is changed, coordinates which may need modification include the

Battle Group’s starting position, which is found in the oplog database, friendly and threat

port positions, threat base positions, threat surface ship tracks, and threat air tracks. Port

and base coordinates, as well as the number and names of them, are specifically assigned

within the Java code. The code used for port and base parameters can be easily modified

with additions or deletions or can be modified to draw from an outside source such as

another database table which would make it easier to modify the data. Both threat

surface and threat air tracks are randomly selected from a group of predetermined tracks

that are coded directly into specific JAVA classes. These classes can also be easily

modified directly or modified to draw from an outside source.

2. Penalty and Bonus Points
Penalty and Bonus points are accrued on various occasions during game play.

Point increments range from 1 to 25 points, depending upon the event for which the

bonus or penalty is being awarded. The default amount for bonus and penalty awards is

one point. A second method for each type of award allows the code writer to specify how

many points are to be awarded. The referee can change, or eliminate these values

wherever desired. See the Student Manual for a specific list of currently assigned bonus

and penalty point values. Penalty and bonus points are changed by making the desired

changes directly in the applicable Java class.

3. Random Variables
 If desired, the referee can change the mean interarrival time of air and surface

threats and the mean detection time of each sensor. The referee can also change the

probability of hit and probability of kill rates for both Battle Group and threat attacks, as

well as the logistics and weapons status determinations at the beginning of the wargame.

The referee has control over the type of random number generated for any random

number generation.

 54

4. Other Variables
Interspersed throughout the JAVA code are numerous variables that are easily

changed by the referee. These variables include:

- Threat sensor range,

- CLF sensor range,

- Friendly base sensor range,

- Air threat speed,

- Enemy base Staying Power,

- Air threat Staying Power,

- Surface threat Staying Power,

- Total number of enemy weapons,

- Maximum number of air threats at any given time,

- Maximum number of surface threats,

- Maximum number of days to run the wargame.

C. MISCELLANEOUS CONTROL

The speed at which the simulation runs can be controlled by the Referee.

Additionally, the frequency of screen refresh updates can be controlled by the Referee.

The wargame intelligence scenario and summary of game rules are simple Strings of text

that can be modified at any point. In future versions of the Operational Logistics

Wargame, the intelligence scenario and summary of game rules are designed to be simple

text files that may be modified at the referee’s discretion.

 55

THIS PAGE INTENTIONALLY LEFT BLANK

 56

V. CONCLUSIONS AND RECOMMENDATIONS

The Operational Logistics Wargame is a combat model with a solid Operations

Research foundation. It is specifically designed for Operational Logistics students. It

will help the Naval Postgraduate School meet the continuing goal of training Logistics

Officers to make effective decisions in combat situations. The wargame has numerous

advantages over existing combat models, particularly PRO-LOG that make it ideally

suited to meet the needs of its users. The major advantages are discussed below. Also, it

is recognized that to best meets the needs of the Operational Logistics curriculum,

building this wargame will span the work of several theses. To that end, key

recommended enhancements are discussed in this chapter. Additional notes on

enhancements can be found in Appendix B.

A. ADVANTAGES

1. Flexible
This wargame is expandable and configurable. The Carrier Battle Group along

with its supply and weapons lists can be tailored in size by simple changes to the

accompanying database. Other aspects of combat can be added to the wargame without

changing the basic model. The scenario, including the geographic region can be

modified at will. PRO-LOG was neither expandable nor configurable. PRO-LOG had a

single scenario.

2. Modern

The Operational Logistics Wargame uses the most up-to-date modeling and

simulation techniques. The graphical user interfaces provide a modern, intuitive,

windows-based environment in which to run the wargame. The wargame’s predecessor

was a deterministic, text-based model.

3. User-Friendly
Detailed graphical displays throughout the game give players immediate feedback

on their progress. Players have direct control over their units for both logistical and

combat aspects of the game.

 57

4. Quick Starter
Training time to use this wargame is minimal and is commensurate with the

classroom time devoted to the subject.

5. Portable
The Operational Logistics Wargame can be installed on individual personal

computers or laptops and can be run on all major operating systems.

B. RECOMMENDED ENHANCEMENTS

 1. State Variable Statistics
The simulation model makes extensive use of firePropertyChange() methods to

indicate that certain variables have changed. Examples of these variables include arrivals

of enemy aircraft, detection of surface threats, underway replenishments, and port visits

by Battle Group assets. Statistical data can be collected about these variables with

accompanying statistical analysis performed. Code should be added to collect these

simulation data with subsequent analysis done and reported to the player.

2. Logistics and Weapons Inventory Statistics
 Data on instantaneous logistics and weapons inventory levels is calculated and

reported throughout the simulation. Code should be added to monitor these levels for

later analysis. One possible approach would be to use firePropertyChange() methods to

report inventory levels whenever the inventory levels are calculated for a particular

simulation time. Although consumption of logistics items is continuous, consumption is

only calculated whenever the game is paused. Due to the Discrete Event Simulation

nature of the Operational Logistics Wargame, the pauses are not periodic and thus the

statistics reported on the inventory levels would not be periodic either. This complicates

collection and reporting of simulation-wide statistics on logistics and weapons inventory

levels. This area requires additional research.

 3. Other Game Play Statistics
In other areas of game play such as combat, results of the wargame or score

categories should be tracked. Relevant data such as number of enemy targets damaged or

destroyed, number of weapons fire ‘misses’ due to zero inventory, and number of Battle

 58

Group assets damaged, repaired, and destroyed should be available for analysis.

Additionally, statistics on how the score of the game was reached should be gathered and

reported.

 4. Cookie Cutter Sensors
 Underway replenishments are conducted when ships are within a certain range of

the CLF ship. The sensor used to detect and subsequently schedule underway

replenishment events is the same constant rate sensor used by all assets. Since the

detection is based on a random number generator, this can result in the occasional non-

detection of the combatant ship by the CLF ship and the resulting failure to conduct

underway replenishment. The CLF sensor on the station ship should be a Cookie Cutter

Sensor that always detects its target rather than the constant rate sensor. Addition of a

CookieCutterSensor and its Mediator as well as modifications to the

ConstantRateMediator, ConstantRateSensor, and Referee instantiations are among the

changes that will be necessary to refine this feature.

 5. Enhancing Realism
 The Operational Logistics Wargame includes stochastic methods in certain areas

of game play such as Surface Threat generation, Air Threat generation, damage and

destruction calculations, and sensor detections. However, the game could be enhanced

by adding more random events. For example, if a ship is damaged during an attack, a

requirement for specific repair parts (by weight) could be randomly generated. Or, a

storage tank/room might be destroyed which would reduce the ship’s capacity until

repaired inport. Or, unordered logistics items, such as seasonal foul-weather coats for the

whole crew, might be added to a ship’s unrep request at the time of delivery which would

increase the amount of stores received. These events would serve to confound the unrep

request process in the wargame and make it more closely reflect reality.

 6. Hardwired Data

 a. Instance Variables

In the program code, there are many instance variables that have their

values hardwired into the code. These variables range from the number of days to run the

simulation to the range of the CLF sensor. These variables, more properly, should refer

 59

to JAVA properties files to get their values. Program code throughout should be

modified accordingly.

b. Friendly and Enemy Bases
Both Friendly and Enemy Base data are written directly into applicable

JAVA classes. As is other Friendly and Enemy force data, this data should be retrieved

from an outside database. The classes should be modified to obtain the data from an

outside source.

c. Threat Air and Threat Surface Movement

 Threat Air and Threat Surface movements are based on preset coordinates.

Although each path is randomly selected, there are only a set number of paths to choose

from. These choices are “hardwired” into applicable classes. First, these paths should be

obtained from an outside source with the code modified accordingly. Second, more paths

should be added. Third, when methods have been implemented to differentiate between

land and water, Threat Air and Threat Surface movement should become more random

with some sort of random path generator.

C. CONCLUSION
The Operational Logistics Wargame as presented by this thesis is a functional tool

for use in introductory coursework of the Operational Logistics Curriculum at the Naval

Postgraduate School. It presents a combat logistics system complex enough to challenge

the intended audience along with a player-friendly data presentation; this wargame is

ready for immediate use. The flexible design provides a solid basis for future expansion

or other modification. And, the use of Java, a modern program language, ensures that

this tool can be easily maintained.

 60

APPENDIX A . THE OPLOG PACKAGE

This appendix contains detailed information on each class written for this

simulation. All classes are contained in the package oplog or in subpackages such as

oplog.database for databases and related classes, oplog.gui for classes used to make

graphical user interfaces, and oplog.smd for classes used by the discrete event simulation.

Classes not discussed in the appendix are drawn from java, javax, and simkit packages.

The details noted here about each class are considerably more in depth than those found

in the Javadocs. All program code and applicable Javadocs are included in some

electronic versions of this thesis. Some classes that are not used in the current version of

the Operational Logistics Wargame have also been included in those versions as a basis

for future development.

1. OPLOG.DATABASE CLASSES

Classes in the oplog.database package are those classes of the Operational

Logistics Wargame whose main purpose is to interact with external databases. These

classes generally retrieve database information and return the data to the instantiating

class.

a. DataBaseInfo.java
The DataBaseInfo Class contains the database information methods that retrieve

specific data from the Oplog.mdb database. Performs look up of ships and ship classes

from the CVBG (Carrier Battle Group) Table. Uses that information to look up data in

other tables.

b. DataRepository.java

 The DataRepository Class has two primary functions. Its first function is as a go-

between for the IntelSummary class and whatever follows. In the current version of the

Operational Logistics Wargame, the DataRepository is created by IntelSummary and

receives information created by IntelSummary. The Constructor requires information on

the game option the player has chosen in the form of an integer. The Constructor also

calls for 7 vectors of information gathered in the IntelSummary instance that instantiated

the DataRepository. Based on the information received, the DataRepository then
 61

implements one of two options for continuing the wargame. The second function of this

class is to store information about weapons and logistics of the fleet during the entire

wargame. This class also provides storage for information about the CLF ship and

underway replenishment requests. It contains methods to update unrep requests and CLF

inventories. The DataRepository provides methods for adding bonus or penalty points to

the accumulated score and maintains the accumulated score.

c. LogRates.java
The LogRates Class is a database intermediary that gets the logistics consumption

rates and storage requirements. The Constructor requires input of two Vectors. The first

is a Vector of ShipHashMaps. Each ShipHashMap contains the ship names, ship classes,

and ship capacity for all logistical items of the named ship. The elements of the second

Vector are the fleet’s logistic items as Strings. A Vector of basic logisitics capacities is

used rather than the current logistics status of each ship since consumption rates are

added to the input ShipHashMap and the updated version is returned upon request. This

version adds a rate key and storage key to each ship for each logistical item.

d. ThreatDataGetter.java

The ThreatDataGetter is the interface between the Operational Logistics

Wargame and the Threat.mdb database. It has functionality similar to that of the

DataBaseInfo class and retrieves information for use by Surface Threats.

e. WeaponsData.java
The WeaponsData Class is an intermediary that gets additional information about

weapons from the database. The Constructor requires input of two Vectors. The first

Vector is a Vector of ShipHashMaps. Each ShipHashMap should contain the ship

names, ship classes, and ship capacity for all weapons of the named ship. The elements

of the second Vector are the fleet’s weapons in String form. A Vector of basic weapons

capacities is used rather than the current weapons status of each ship since static

information is added to the input ShipHashMap and the updated version is returned upon

request. This version adds a Weight key, Purpose key, and Range key for each weapon

to each ShipHashMap.

 62

2. OPLOG.GRAPHICS CLASSES
Classes in the oplog.graphics package provide generic graphics services to the

Operational Logistics Wargame. These classes do not provide any information to the

player concerning the logistical or combat status of the wargame.

a. Animate.java
Animate is the animation class of the Operational Logistics Wargame Simulation.

This Class extends JFrame and implements SimEventListener. The Constructor requires

a Vector whose elements are the Battle Group’s ship names as Strings and reference to

the current instantiations of LogStatus, WeaponsStatus & DataRepository. The

Animation methods are borrowed from the AnimationTest Class written by Professor A.

Buss. The Animation Frame has three main areas. The first is an animation screen

display of the current Ships, Surface Threats, Air Threats, Friendly Bases and Enemy

Bases superimposed on a backgound map. Only Air and Surface Threats that are

currently detected by Battle Group assets are displayed. The second feature is a panel

displaying various simulation data. The third feature is a control panel for pausing,

resuming, and exiting the simulation.

b. ControlPanel.java
The ControlPanel class extends JPanel. It is a modified version of Professor

Arnold Buss's PingerPanel class. The Control Panel generated by ControlPanel contains

the buttons to restart, stop, and exit the wargame. The Constructor requires reference to

the current instantiation of the Object that it will be acting upon. In the current version of

the Operational Logistics Wargame, this panel is one of the three main elements of the

animation screen and is instantiated in the Animate constructor.

c. Pinger.java
The Pinger class extends SimEntityBase and implements Runnable. It is

borrowed directly from PingThread2.java by Professor Arnold Buss. The Constructor

requires doubles representing the time between ping events and number of realtime

milliseconds per Simulation Time. The Constructor also requires a Boolean representing

the desired status of the pinger.

 63

d. SimTimePanel.java
The SimTimePanel class extends JPanel. It is a component of the actions tab of

the animation window. It displays the simulation time and is updated to reflect the

current simulation time whenever the game is automatically paused.

3. OPLOG.GUI CLASSES

The oplog.gui package contains classes that provide information to the player in

the form of Graphical User Interface displays. All information concerning both the

logistical and combat progress of the game is presented by these classes.

a. AfterWelcome.java
 The AfterWelcome Class is a go-between for the OplogWelcome Class and the

IntelSummary Class. It is instantiated by OplogWelcome and reacts to the selection of

the specific buttons from the OplogWelcome Class. The Constructor requires an integer

representing which button was chosen. This class enables the wargame structure to be

easily modified once the Resume feature is available by adding more specific button

actions without modification to the OplogWelcome or IntelSummary Classes. This Class

instantiates a PleaseWaitPanel and the IntelSummary Classes. The IntelSummary Class

is instantiated within a SwingWorker Class to allow the PleaseWaitPanel to display

properly.

b. CasGroupSetter.java
The CasGroupSetter Class extends JPanel and implements MouseListener. It is a

GUI for the Operational Logistics Wargame. The Constructor requires Vectors of Strings

representing ships in the Battle Group and ships sailing individually as well as reference

to the current instantiation of the DataRepository. This GUI allows the player to set the

course and speed for the Battle Group. It generates a frame containing a map

background, a speed slider, and three option buttons.

 64

c. CASListener.java
The CASListener Class implements ItemListener. The Constructor requires the

name of the ship that it is representing in String form. It provides Listeners for the

CheckBoxes in the Course and Speed, the MoreCourseAndSpeed and

MoreCourseAndSpeedUnits Classes.

d. CasUnitSetter.java

The CasUnitSetter Class extends JPanel and implements MouseListener. It is a

GUI for the Operational Logistics Wargame. The Constructor requires a Vector of

Strings representing the ships that will sail individually and reference to the current

instantiation of DataRepository. The CasUnitSetter Class allows the player to set course

and speed for individual ships of the CVBG. It displays a frame containing a map

background with a separate tab for each ship containing a speed slider, and three option

buttons.

e. CourseAndSpeed.java
The CourseAndSpeed Class extends JPanel. It is a GUI for the Operational

Logistics Wargame that allows the player to decide how to set the Course and Speed for

the CVBG. The Constructor requires reference to the current DataRepository. This class

is instantiated by the DataRepository Class.

f. FireResultsPanel.java
The FireResultsPanel extends JPanel. It is a GUI for the Operational Logistics

Wargame. This GUI provides Battle Damage Assessment of targets in text format. This

class is instantiated by the FireWeaponsPanel Class and its Constructor requires a String

representing the results of weapons firing.

g. FireWeaponsPanel.java
The FireWeaponsPanel extends JPanel. It generates a GUI for the Operational

Logistics Wargame. This GUI allows the player to fire weapons at known threats. It

uses a uniform random number generator to determine if the threat is damaged or

destroyed. The probability of hit and probability of kill rates are slightly higher against

threats than threat attacks against Battle Group assets due to technology differences and

weapons limitations for Battle Group assets. The Constructor requires a Vector of

existing wargame Ships, a Vector of current wargame Threat assets and EnemyBases,
 65

and reference to the current DataRepository. This Class is instantiated by the

SelectActionsPanel.

h. IntelSummary.java
The IntelSummary Class extends JFrame. It generates a GUI for the Operational

Logistics Wargame. The GUI provides opening scenario information. This information

includes an intelligence summary as well as the Carrier Battle Group composition and

logistical status. This class uses a uniform random variate to determine fuel, weapons,

and stores onboard each ship at the start of the wargame. Each ship has 75-100% of its

capacity for each item onboard with the inventory level of each determined

independently.

i. LogProgressBar.java
The LogProgressBar Class extends JProgressBar. It is a ProgressBar specialized

for the Operational Logistics Wargame Intelligence Summary. It is used to display

percentage on board versus total capacity of the indicated logistics item or weapon. The

Constructor requires a String representation of the maximum capacity and an integer

representing the current inventory value.

j. MoreCasGroupSetter.java
The MoreCasGroupSetter Class extends JPanel and implements MouseListener.

Based on the CasGroupSetter Class, it also allows the player to set the Course and Speed

for the CVBG. The Constructor calls for input of two Vectors and one Boolean. The

first Vector contains a list of ships, presented as Ship vice ShipHashMaps, that will have

course and speed set by the MoreCasGroupSetter instantiation. The second Vector

contains a list of ships to be sent on to the MoreCourseAndSpeedUnits Class. This class

instantiates the MoreCourseAndSpeedUnits Class if the indicated Vector is not empty.

Otherwise, this class adds new coordinates to a Ship’s path or makes a new path for the

Ship as indicated by the input Boolean.

k. MoreCasUnitSetter.java

The MoreCasUnitSetter Class extends JPanel and implements MouseListener. It

allows the player to set additional Coordinates for individual ships in the CVBG. The

Constructor calls for input of a Vector and a Boolean. The Vector contains a list of ships,

presented as Ship vice ShipHashMaps, that will have course and speed set by this Class.
 66

This class adds new coordinates to a Ship’s path or makes a new path for the Ship as

indicated by the input Boolean.

l. MoreCourseAndSpeed.java
The MoreCourseAndSpeed Class extends JPanel. This GUI allows the player to

select which ships to set a group course and speed for. The Constructor requires a Vector

of Ships and a Boolean. The Vector of Ships is used to construct a list of ships that can

have course and speed set. Ships chosen to be in the group added to the group Vector

and others are added to the units Vector. If any Ships are in the group Vector, the

MoreCasGroupSetter Class is instantiated and is passed both Vectors and the Boolean. If

the group Vector is empty, this Class instantiates a MoreCasUnitSetter Class and passes

the MoreCasUnitSetter the new unit Vector of Ships and the Boolean received by the

Constructor.

m. MoreCourseAndSpeedUnits.java
The MoreCourseAndSpeedUnits Class extends JPanel. It allows the player to

select which ships to set individual course and speed for. The Constructor requires a

Vector of Ships and a Boolean. The Vector of Ships is used to construct a list of ships

that did not have course and speed set by the instantiating MoreCasGroupSetter Class. If

any ships are chosen for individual course and speed additions, a new Vector of ships is

created and this Class instantiates a MoreCasUnitSetter Class This class passes the

MoreCasUnitSetter the new Vector of Ships and the Boolean received by the

Constructor.

n. OplogWelcome.java

The OplogWelcome Class is the opening GUI for the Operational Logistics

Wargame. It has no real function other than to start the wargame and contains the main

method of the wargame. The code used in this Class to generate panels is organized

differently, and is perhaps, more clumsy than code used to generate panels later in the

wargame. This class intantiates the AfterWelcome Class.

o. PleaseWaitPanel.java
The PleaseWaitPanel extends JPanel and generates a simple text frame to provide

information to the player. This GUI tells the player that the wargame is running correctly

and loading data from the database. This Class is instantiated whenever necessary. The
 67

current version of the Operational Logistics Wargame instantiates this Class in the

AfterWelcome, CasGroupSetter and CasUnitSetter classes.

p. SelectActionsListener.java
The SelectActionsListener Class implements ItemListener. It provides Listeners

for the CheckBoxes in the Select Actions GUI of the Operational Logistics Wargame.

q. SelectActionsPanel.java
The SelectActionsPanel extends JPanel. This GUI generates a Radio Button

Group that offers the player several choices of actions that may be taken when the game

is paused. The Constructor calls for a Vector of the existing Ships.

r. SliderListener

The SliderListener Class is an implementation of ChangeListener. This listener

tracks changes to a speed slider from various Course and Speed setting GUIs.

Constructor requires input of the ship’s name and a default speed. When used by the

MoreCASUnitSetter Class, the default speed is the ship’s current speed. Otherwise, the

speed is usually the maximum speed.

s. SwingWorker.java
The SwingWorker Class is a Class for the Operational Logistics Wargame. It

provides simple thread capabilities for various sections of the wargame. In the current

version of the Operational Logistics Wargame, SwingWorker is instantiated when

needed. It is copied directly from the JFC Swing Tutorial: A Guide to Constructing

GUIs. Other information about this class is provided from the original document:

This is the 3rd version of SwingWorker (also known as SwingWorker 3), an
abstract class that you subclass to perform GUI-related work in a dedicated thread
… Note that the API changed slightly in the 3rd version: You must now invoke
start() on the SwingWorker after creating it.

t. TheLogPanel.java
The LogPanel Class extends JPanel. It generates a panel for the animation frame

of the Operational Logistics Wargame Simulation. This frame is used to display a

running log of textual information concerning the game status. This panel is updated

whenever the game is paused automatically. The Animate Class instantiates this Class.
 68

4. OPLOG.LOG CLASSES
The oplog.log classes contain the methods for consuming, replenishing, and

tracking inventory of logistical items and weapons in the Operational Logistics Wargame.

These classes use information obtained by oplog.database Classes from external sources

or use information stored as instance variables in oplog.database Classes.

a. CheckUnrepSchedule.java

The CheckUnrepSchedule Class is a class that provides additional functionality

for the DataRepository class. The Constructor needs reference to the current

DataRepository and a Ship representation of the ship whose underway replenishment

schedule should be checked. This Class is used by various Classes throughout the

Operational Logistics Wargame to check whether a ship's unrep requests should be filled.

Normally this class is used when the CLF ship detects another ship. If an unrep is

scheduled, the appropriate amount is added to the ship's inventory of that item. If the

new total could be above maximum capacity, new total is changed to maximum capacity.

When a previously scheduled underway replenishment is accomplished, the CLF ship’s

inventory of that item is reduced by the amount ordered. If the unrep was not a

scheduled unrep, no action is taken.

b. CLFPanel.java
The CLFPanel Class extends JPanel. A Vector representation of the CLF ship’s

capacity is required by the Constructor. It calculates and displays inventory levels of the

CLF ship for each broad class of supply at the beginning of game play. This class uses a

uniform random variate to determine fuel, weapons, and stores inventory onboard the

CLF ship at the start of the wargame. The starting inventory is 75-100% of the

maximum capacity onboard with the inventory level of each determined independently.

c. CLFStatus.java
The CLFStatus Class extends JPanel. It retrieves and displays inventory levels of

the CLF ship for each broad class of supply throughout game play. This Class uses the

same basic code as that of the CLFPanel Class but reports current inventory levels rather

than generating random amounts. The Constructor requires reference to the current

DataRepository.

 69

d. DeleteUnrepRequest.java
The DeleteUnrepRequest Class is a class that provides additional functionality for

the DataRepository Class. It is used to delete all of a specific ships's orders from all

unrep request lists. This Class is normally used only when a ship has been destroyed or

when a ship makes a port visit. The Constructor requires reference to the current

DataRepository and the indicated ship.

e. LogStatus.java
The LogStatus Class is the workhorse for logistics in the Operational Logistics

Wargame. It calculates consumption of logistical items. Also calculates penalties or

bonus points for daily inventory status. Penalties and bonuses are only calculated and

charged every 24 hours. This Class provides a method to replenish all logistical items for

a ship when a port visit is made by that ship. In calculating consumption, it uses

consumption rates obtained from the Oplog database. The Constructor requires reference

to the current DataRepository.

f. OrderListener.java
The OrderListener Class implements ChangeListener. It is a listener for the

Operational Logistics Wargame. This listener tracks changes to its order slider from the

Ship Order Panel. Constructor requires input of a default order amount.

g. PlacedRASRequestsPanel.java
The PlacedRASRequestsPanel Class extends JPanel. A GUI for the Operational

Logistics Wargame, it displays all current Unrep requests. Each is displayed with a radio

button. If the player selects a specific Unrep request, a ShowOrderPanel for that order is

instantiated. The Constructor requires reference to the current DataRepository.

h. ScorePanel.java
The ScorePanel Class extends JPanel. Drawing information from the current

instantiation of the DataRepository Class, it displays the current score of wargame.

i. ShipRASRequestsPanel.java
The ShipRASRequestsPanel Class extends JPanel. It generates a Panel used to

request specifc items during the next Unrep between the indicated ship and the CLF ship.

All fuel, stores, and weapons available via Unrep are displayed on individual sliders.

(Tomahawk and Harpoon are not available via Unrep.) Maximum value of each slider is
 70

the ship's capacity for that item. The player may set routine or urgent priority for the

order. The default priority is routine. If urgent priority is selected, a penalty is accessed.

The Constructor requires the name of the specified ship in String form and reference to

the current DataRepository.

j. ShowOrderPanel.java
The ShowOrderPanel Class extends JPanel. It generates a panel that displays all

pertinent information about the selected Unrep request such as amount and types of

stores, fuel, or weapons ordered; whether the Unrep is currently scheduled to be filled;

and the total amount of the order. Due to the use of the HashTable Class, the information

does not appear in any particular order. The Constructor requires reference to the

indicated order in ShipHashMap form.

k. UnrepScheduler.java
The UnrepScheduler Class provides a method to review all existing unrep

requests and determine which orders should be filled based on priority of each order,

FIFO status, and CLF inventory. Once the requirements to be filled can no longer be

met, no other requests of that category are considered for filling, reqardless of priority.

Fuel, Weapons, and Stores requests are considered independently from each other. This

class should be used to update the Unrep schedule, whenever necessary, including after

any port visit, any new request, or when a ship is destroyed. No partial order filling

occurs. The Constructor requires reference to the current DataRepository.

l. UnrepSummaryPanel.Java

The UnrepSummaryPanel Class extends JPanel. It generates a GUI for the

Operational Logistics Wargame. This GUI allows the player to review previously placed

unrep orders and place additional orders. The Constructor requires a Vector of the

existing Ships and reference to the current DataRepository.

m. WeaponsStatus.java
The WeaponsStatus Class is the workhorse for Weapons Inventory. Similar in

methodology to the LogStatus Class, it tracks consumption of weapon items. The

Constructor requires reference to the current DataRepository.

 71

5. OPLOG.SMD CLASSES
The oplog.smd package contains all classes that form the Discrete Event

Simulation portion of the Operational Logistics Wargame.

a. AirBG.java
The AirBG Class extends OplogMover. It is an OplogMover that is specialized to

be a Battle Group Air Asset. It generates a unique tag for each unit that is created so, no

matter how many are created, no two are alike. This Class is not used in the current

version of the Operational Logistics Wargame. The Constructor requires the origin as a

Coordinate and the maximum speed as a double.

b. AirThreat.java
The AirThreat Class extends OplogMover. It is specialized for the Arrival

Process. It generates a unique identifier tag for each AirThreat generated. AirThreats are

instantiated by the AirThreatGenerator Class. The Constructor requires the origin as a

Coordinate and the maximum speed as a double.

c. AirThreatCourseGenerator.java
The AirThreatCourseGenerator extends SimEntityBase. This class contains a

group of predetermined courses for Air Threats. The courses are Vectors of Coordinates.

This Class uses a uniform random number generator to determine which of those courses

will be assigned to a specific AirThreat.

d. AirThreatGenerator.java
The AirThreatGenerator Class extends SimEntityBase. Constructor requires input

of two doubles to use as X and Y coordinates for the unit’s homeport, a double as

maximum speed, a long as the seed for a random number generator, and a reference to the

current wargame’s instance of the Controller. This Class Listens for the Arrival Process

designated for AirThreat Arrivals. Upon notification that an arrival has occurred, the

AirThreatGenerator randomly generates a new AirThreat with a starting position

generated for the unit based on the input homeport parameters and a speed as passed in

the Constructor. The AirThreat’s course is generated by a call to the

AirThreatCourseGenerator. This Class is instantiated in the Deployment Class. This

Class instantiates an AirThreat, an AirThreatCourseGenerator and a PathMoverManager.

 72

e. ArrivalProcess.java
The ArrivalProcess Class extends SimEntityBase. This class implements an

arrival process. (See Simulation Modeling and Analysis by Law & Kelton for additional

information on the arrival process.) This Class has a variety of Constructors. The current

version of the Operational Logistics Wargame uses the Constructor that requires a

RandomVariate class name and appropriate parameters the RandomVariate Class. The

Arrival Process is instantiated in the Deployment Class

f. BattleGroupMoverManager.java
The BattleGroupMoverManager extends SimEntityBase. It is a variation of the

PathMoverManager Class and is specialized for use with some OplogMovers of the

Operational Logistics Wargame. It can be used with OplogMovers that have a

ConstantRateSensor. This function of this class is to control movement from one

waypoint to another as provided by the player. This Class listens for EndMoves of the

assigned OplogMover and schedules movement to the next waypoint, as available. If no

additional waypoints are present, provides notification of same. Provides methods to add

additional waypoints to a Vector of Coordinates or to establish a totally new Vector of

Coordinates. When the OplogMover is an instance of the Ship Class, it checks the

current speed of the Ship; otherwise, it uses the default maximum speed. The

Constructor requires the applicable Mover and a Vector of Coordinates. This Class is

instantiated in the Deployment, FriendlyBaseGenerator, and EnemyBaseGenerator

Classes.

g. ConstantRateMediator.java
The ConstantRateMediator extends SimEntityBase and implements Mediator. It

is a Mediator specialized for use with a Constant Rate Sensor. This version does not

contain methods for use with AirBG assets. This class uses a Exponential Variate

generator to determine if and when a ConstantRateSensor detects and undetects a target.

The mean detection time used to generate the Exponential Variate is obtained by a call to

the specific Constant Rate Sensor’s parameters. This Class uses the broad types of

sensors, targets, and mover defined in the current MediatorFactory to refine specific

detection parameters. The Constructor needs the current Sensor and the Mover it is

targeting.
 73

h. ConstantRateSensor.java
The ConstantRateSensor Class extends BasicSensor. When used in conjunction

with a ConstantRateMediator, makes detection of targets a stochastic process rather than

a deterministic process. The Constructor requires input of the Sensor’s Mover, the

Sensor’s range, and the mean detection time.

i. Controller.java

The Controller Class extends SimEntityBase and is a centralized control center

for the Operational Logistics Wargame simulation. It provides internal controls over the

animation panel. It listens for arrivals of new SurfaceThreats and AirThreat. Upon

arrival of a new threat asset, the threat is registered with the referee. Additionally the

Controller determines at which point, if any, a threat asset is added to the animation panel

or removed from the animation panel. This Class unregisters obsolete targets, handles

destruction of all friendly and threat assets, and listens for final End Moves of Battle

Group assets. It prompts reporting of specific events to the player and orders automatic

simulation pauses. The Controller Class is instantiated in the Deployment Class. The

Controller Class instantiates the Animate Class. Its Constructor requires input of the

current Referee, a Vector of the current Ships, and references to the current LogStatus,

WeaponsStatus and DataRepository instantiations.

j. Deployment.java

The Deployment Class extends SimEntityBase. It is the central class for the

Discrete Event Simulation portion of the Operational Loogistics Wargame. Without the

lead-in GUIs and database retrieval Classes, this would be the Main Method for the

simulation. This class instantiates the ArrivalProcess Classes for SurfaceThreat and

AirThreat Mover generation. It instantiates the EnemyBaseGenerator and

FriendlyBaseGenerator Classes. The CVBG ships are instantiates as Ship Movers in this

Class. The Ships’ Air Sensors and Surface Sensors are instantiated as

ConstantRateSensors. A special CLF sensor, used by the CLF ship to conduct Unreps

when alongside a CVBG ship, is instantiated in the Deployment Class as a

ConstantRateSensor. The Surface Sensors used by FriendlyBases to detect ship port

visits are instantiated in this class. All Classes required to run a Simkit Discrete Event

Simulation are instantiated in this Class including the Referee and
 74

ConstantRateMediators (using Mediator Factory). The LogStatus and WeaponsStatus

Classes are instantiated by the Deployment Class. This Class contains code to track

certain statistics gathered during the wargame but the current version of the Operational

Logistics Wargame does not report the final statistical results. The Constructor requires

reference to the current DataRepository.

k. EnemyBase.java

The EnemyBase Class extends OplogMover. It is a Basic Mover specialized for

enemy bases. Current design uses hard-wired data in the EnemyBaseGenerator Class to

assign instance variables. Can be modified to use information drawn from an outside

source. Although this Class is a child of the Mover Class, it doesn't actually move since

it has speed of zero hard-wired. Otherwise, it fulfills all requirements to be a Simkit

Mover. Extending the Basic Mover and Mover Class to this class enables a broad range

of possibilities for interaction with other components of Simkit. The Constructor requires

the origin as a Coordinate and the maximum speed.

l. EnemyBaseGenerator.java
The EnemyBaseGenerator Class extends SimEntityBase. The Constructor

requires input of references to the current Operational Logistics Wargame instances of

the Referee and the Controller. This Class is a very basic Mover Generator. It uses

hardwired data to set parameters for its Movers and is only able to generate a

deterministic number of EnemyBases. This Class generates a new EnemyBase for each

set of hardwired data it contains. All EnemyBases have a speed of zero and an origin as

assigned. The current version of the wargame does not assigned sensors to EnemyBases.

This Class is instantiated in the Deployment Class. This Class instantiates a EnemyBases

and a BattleGroupMoverManager for each EnemyBase. It registers the new

EnemyBases as targets.

m. FriendlyBase.java
The FriendlyBase Class extends OplogMover. It is a Basic Mover specialized for

friendly bases. Current design uses hard-wired data in the FriendlyBaseGenerator Class

to assign instance variables. Can be modified to use information drawn from an outside

source. Although this Class is a child of the Mover Class, it doesn't actually move since

it has speed of zero hard-wired. Otherwise, it fulfills all requirements to be a Simkit
 75

Mover. Extending the Basic Mover and Mover Class to this class enables a broad range

of possibilities for interaction with other components of Simkit. The Constructor requires

the origin as a Coordinate and the maximum speed.

n. FriendlyBaseGenerator.java
The FriendlyBaseGenerator Class extends SimEntityBase. The Constructor

requires input of references to the current Operational Logistics Wargame instances of

the Referee and the Controller. This Class is a very basic Mover Generator. It uses

hardwired data to set parameters for its Movers and is only able to generate a

deterministic number of FriendlyBases. This Class generates a new FriendlyBase for

each set of hardwired data it contains. All FriendlyBases have a speed of zero and an

origin as assigned. Each FriendlyBase is assigned a ConstantRateSensor. This Class is

instantiated in the Deployment Class. This Class instantiates FriendlyBases, a

BattleGroupMoverManager for each FriendlyBase, and a ConstantRateSensor for each

FriendlyBase. It registers the new FriendlyBases’ ConstantRateSensors as sensors.

o. GenRandomDBTargets.java
The GenRandomDBTargets Class extends SimEntityBase. This Class uses a

stochastic process to determine which data set found in the Threat database should be

assigned to a SurfaceThreat when it is generated. The GenRandomDBTargets

Constructor requires input of two doubles to use as X and Y coordinates for the unit’s

homeport, a long as the seed for a random number generator, and a reference to the

current wargame’s instance of the Controller. This Class Listens for the Arrival Process

designated for SurfaceThreat Arrivals. Upon notification that an arrival has occurred, the

SurfaceThreatGenerator randomly generates a new SurfaceAirThreat with a starting

position generated for the unit based on the input homeport parameters, a ship type as

determined by the database random draw and the ship type’s associated speed. The

SurfaceThreat’s course is generated by a call to the SurfaceThreatCourseGenerator. This

Class is instantiated in the Deployment Class. This Class instantiates a SurfaceThreat, a

SurfaceThreatCourseGenerator and a PathMoverManager.

 76

p. OplogMover.java
The OplogMover Class extends BasicMover. It contains methods specialized for

the Operational Logistics Wargame. Methods in this Class are common to all Movers in

the wargame. The Constructor requires the origin as a Coordinate and the maximum

speed.

q. PathMoverManager.java

The PathMoverManager Class extends SimEntityBase. It is specialized for use

with some OplogMovers of the Operational Logistics Wargame. It can be used with

OplogMovers that have a ConstantRateSensor. This function of this class is to control

movement from one waypoint to another as provided by the player. This Class listens for

EndMoves of the assigned OplogMover and schedules movement to the next waypoint,

as available. If no additional waypoints are present, provides notification of same. The

Constructor needs the applicable Mover and a Vector of Coordinates.

r. Ship.java
The Ship Class extends OplogMover. It is a Basic Mover specialized for ships.

Tags each mover with the unique ship's name as found in a database. This class has

methods that are unique to Mover objects representing Battle Group ships. All Movers of

the Class Ship are instantiated in the Deployment Class. The Constructor requires the

ships name and hull type as Strings, its origin as a Coordinate, the maximum and current

speeds as doubles, and the ship’s Staying Power & mission as Strings. Ships are

instantiated in the Deployment Class.

s. SurfaceThreat.java
The Surface Threat Class extends OplogMover. It is specialized for database

surface threats. Tags each SurfaceThreat Mover with a unique tag based on the

SurfaceThreat type and creation time. Can be used with the Arrival Process. The

Constructor requires the ship type as a String, the origin as a Coordinate, and the

maximum speed as a double.

 77

t. SurfaceThreatCourseGenerator.java
The SurfaceThreatCourseGenerator extends SimEntityBase. It uses a stochastic

process to determine which of several courses will be assigned to a specific

SurfaceThreat. Randomly selects a Vector of coordinates from a group of predetermined

courses.

6. OPLOG.UTIL CLASSES
Classes in the oplog.util packages are specialized versions of some classes found

in the java.util package.

a. MoverHashMap.java
The MoverHashMap Class extends HashMap. It allows HashMaps to be created

for each Ship or other Mover though an iterative process without hardwiring ship names

into variable names. Thus a new HashMap variable is created for each Ship. Can be

used for any mover including Ships. The Constructor requires reference to the applicable

OplogMover.

b. ShipHashMap.java
The ShipHashMap Class extends extends HashMap. It allows HashMaps to be

created for each ship though an iterative process without hardwiring ship names into

variable names. Thus, a new HashMap variable is created for each ship. This method

should not be used for movers of Class Ship. See MoverHashMap. The Constructor

requires the ship’s name in String form.

 78

APPENDIX B. RECOMMENDED ENHANCEMENTS

The Operational Logistics Wargame as presented by this thesis is fully functional;

however, there are areas where the design should be enhanced to improve playability,

functionality, realism, computer resource usage, and to make the wargame more robust.

The modular nature of the JAVA programming language allows for the wargame to be

modified in a piecemeal fashion so upgrades to the program can be either major or minor

in nature. There are virtually an unlimited number of enhancements that can be made to

the Operational Logistics Wargame. This appendix is not intended to be an all-inclusive

list of potential upgrades, but rather a recommended starting point for future versions of

the wargame. This chapter includes known recommendations organized by design area.

Within each design area, the recommendations viewed as most important are noted first.

1. PLAYABILITY AND FUNCTIONALITY ENHANCEMENTS

a. Save and Resume

The single most important upgrade that should be added to the Operational

Logistics Wargame is the ability to save a game session and subsequently resume the

game at a later time. Considered to be a major enhancement, changes would be

necessary to nearly every class in the Operational Logistics Wargame package. One

possible way to implement this feature would be through the use of the JAVA

Serialization API. In JAVA, objects exist only in the JAVA Virtual Machine and current

memory when the program is running. But, by implementing the Serializable Interface

where needed, objects could become persistent and exist outside the Java Virtual

Machine. (Greanier, 2000) Caution is necessary when using the Serializable Interface

due to its fragility. Another alternative for adding a Save and Resume function is the

through the use of XML. XML offers a much more robust method for the desired Save

and Resume features.

b. Course and Speed Visual Aids
The ships’ scheduled courses and speeds are not shown during game play, during

pauses, or when the courses and speeds are being set. Currently, the course is printed on

an output screen whenever a new course is chosen or an existing course has waypoints

 79

added to it; but this is not a player-friendly method of passing the information. Adding a

visual reference showing the courses and speeds would enhance the interface between the

player and the wargame.

c. Identification of Movers
Methods should be added that allow the player to point and click on any Mover

displayed during a pause in game play. When a Mover is chosen, pertinent information

should be displayed on a pop-up screen such as it’s name, speed, and scheduled course.

Enemy Movers should only display name, speed, and current direction of movement. It

would also be helpful for the player to be able to find out the distance between a specific

Mover and any other point on the map.

d. Manual Deletion Of Underway Replenishment Requests
Methods should be added that allow the player to selectively delete Underway

Replenishment requests.

e. Underway Replenishment Rendezvous
There is no method that schedules a specific underway replenishment rendezvous

between Combat Logistics Force Ships and combatant ships. The current method does

not guarantee that the CLF ship and the combatant ship will rendezvous, it only schedules

the specified ships to sail toward a specific waypoints. This alternative could replace the

“Add new coordinates” selection on the “Select Actions Panel.” The “Add new

coordinates“ does not seem to be as useful as the “Change Course” selection so can

probably be eliminated without notice.

2. IMPROVING COMPUTER RESOURCE USAGE AND ROBUSTNESS

 a. JDBC Interface
Classes that use the JDBC driver to access the external database are not as

efficient as possible. Subsequently, the wargame program runs considerably slow

whenever information is needed from the database. These classes could be improved

through the use of joins wherever possible and other more efficient methods of calling the

data. In some cases, data is drawn that is never used. For example, Tomahawk and

Harpoon weights are retrieved along with the other weapon weights but since Tomahawk

and Harpoon cannot be replenished at sea, their weights are irrelevant. Another example

 80

of irrelevant data being retrieved is that of weapons Range for Point Defense weapons.

Modifying the “Select … Where …” code in appropriate classes can eliminate

unnecessary look-ups.

 b. Logical Class Structure
 During development of the Operational Logistics Wargame, some classes were

written with more regard to game flow than logical Java class groupings. Although

significant revisions have been made, there are still some classes that require

modification to remove methods that more logically belong elsewhere or classes that are

large and awkward and should be sub-divided. For example, the Animation class was

originally intended only to show the player a visual display of the simulation. The

animation portion of this class is actually only a small part of the current version. The

methods of the Animation class that deal directly with the visual display of the various

Movers on the map should be made into a separate class of their own. The Animation

class should be renamed to reflect this change and the remaining elements of the class

should be further subdivided in other smaller logical classes. Other classes that are

excellent candidates for sub-division are the IntelSummary and Deployment classes.

c. Reduce Game Delays
The delay between the opening GUI (OplogWelcome) and the Intelligence

Summary GUI (IntelSummary) can be made less noticeable by subdividing

IntelSummary. Several of the tabbed panes in IntelSummary do not depend upon data

from the database. Those panels can be shown in a separate frame in advance of the

remaining tabs. This will minimize the wait time since the player will have something to

do while waiting.

3. INCREASING REALISM AND COMPLEXITY

 a. Scenario Development
 There is no fully developed intelligence scenario. One should be developed.

Once other modifications noted herein are made, multiple scenarios, with

correspondingly different maps and enemy assets.

 81

b. Friendly Air Assets
 Friendly air assets should be added to the model. The Battle Group Air class is

included in the Operational Logistics Wargame package but is not currently used. The

BGAir class was designed with Fixed Wing aircraft sorties in mind. Using the BGAir

class would also require the addition of Air sensors for Surface Threat and Air Threat

assets as well as subsequent modifications to classes involving the BGAir movers, their

sensors, and sensors to detect BGAir movers such as the Constant Rate Mediator,

Constant Rate Sensor, Controller, and Deployment, among others. Allowing the player

to set the course and speed for BGAir would be useful. The issue of weaponry aboard

each BGAir mover needs to be addressed as does logistics inventory of same. Possibly,

the mission parameter of each ship could be refined to differentiate aircraft carriers from

other combatants which would enable the simulation to determine whether or not a

specific ship should have the ability to launch fixed wing aircraft. Rotor wing aircraft are

not particularly needed at this stage of the wargame’s development.

c. F44 Consumption
 Consumption of F44 should be based on the number of sorties per day rather than

a fixed “per day” rate. When the BGAir class is implemented for the aircraft carriers,

consumption of F44 for the aircraft carriers can be directly linked to the number of sorties

flown per day. For other ships, F44 consumption can be based on an average number of

sorties per day per ship type. The F44 consumption rate might also take into account

whether a ship has been in combat within a 24 hour period. The assumption being that a

combat versus non-combat rate per day per ship type could be used.

 d. Link Inventory Levels and Ship Capabilities
 In addition to the severe penalties encountered when a ship reaches unsatisfactory

(or zero) inventory levels, ship capabilities should also be affected by low inventory

levels. Methods need to be added to the program code to do this. For example, if a ship

runs out of propulsion fuel, its speed should be reduced to zero. If a ship runs out of

Point Defense weapons, its probability of being damaged during an attack should be

increased. After implementation of BGAir assets, if an aircraft carrier has no F44, it will

not be able to launch aircraft.

 82

 e. Weapons Use
 Weapons ranges are not based on real weapons ranges and all offensive weapons

can fire at any target. Defensive weapons do not affect the probability of hit that a

Surface Threat or Air Threat has when it attacks a Battle Group asset. (See the

Methodology Chapter for more information.) The correct unclassified ranges for all

weapons are noted in the database and can be implemented whenever appropriate with

only slight code modifications. Modifications to allow weapons to fire only at certain

types of targets based on their type will require significant changes to the FireWeapons

classes. Corresponding changes should also be made to better simulate weapons fire by

threat assets. Changes to threat asset weaponry might include adding weapons counter

methods to Surface Threat and Air Threat Movers when the Mover is generated.

f. Weapons Inventory
Weapons Inventory is also calculated on rounds fired per event with a single unit

used representing the total amount fired per round. For example aircraft carriers typically

have the capacity to carry 12000 rounds of CIWS ammunition and fire 3,000 rounds per

raid by enemy assets. CLF ships with CIWS (Sacramento and Supply Class ships) also

consume 3,000 rounds per raid. However, other ships only use 1000 rounds per raid. In

the wargame, consumption has been simplified so that all ships expend the same amount

per raid, with capacities adjusted accordingly to reflect an accurate number of possible

rounds fired. For transportation purposes, each round weighs approximately .5 pounds

with the casing and packing materials. In the Operational Logistics Wargame database,

the capacity of CIWS aboard aircraft carriers is 4 units with 1 round expended per enemy

raid, and the weight per unit is 3000 rounds x .5 = 1,500 pounds. While technically

accurate for some of the ships, this method sets artificial capacities for other ships, and

the numbers displayed may be confusing to the player. The oplog database contains

rounds expended per raid as well as the simplified versions. Wargame code should be

modified to use the actual capacities, weights, and expenditure values. This modification

would require changes to both inventory reporting and consumption methods.

 83

 g. Multiple Combat Logistics Force Ships
In some classes, the model is not designed to handle more than one Combat

Logistics Force Ship. The database contains all classes of CLF ships, and any single CLF

ship can be used with its actual capacity; however, if more than one CLF ship is desired

in the wargame for both station ship and shuttle ship roles, numerous classes will need to

be modified. Less modification is required if all CLF ships are used only as station ships.

 h. Additional Combatant and Combat Types
 Additional types of combatants can be added to the simulation. Among the

possibilities are Subsurface Battle Group assets and Subsurface Threats. Additional types

of combat and appropriate forces can also be added such as Amphibious landings by

Amphibious forces or land warfare.

 i. Simulation times
 In the wargame, many events occur instantly when in reality the events are not

instantaneous. In some cases this makes no difference to the outcome. For example, a

real ship must accelerate or decelerate to change its speed. In the simulation, speed

changes occur instantly at the scheduled time. When a simulation is run covering several

days, the small amount of time involved in a real speed change is not relevant. However,

other events, such as the length of a Port Visit or Underway Replenishment could affect

game play and should be modeled to include a delay factor. Creative use of Simkit’s

waitDelay() method where needed may enable the model to realistically include delay

times for significant events that are not currently modeled as such.

 j. Land versus Water
 The current version of the Operational Logistics Wargame does not differentiate

between land and water for the movement of ships and aircraft. Methods should be

developed that establish boundaries between the two types of geography. Once these

methods exist, the scenario, including background map will be easier to change.

k. Refine Stores and Weapons RAS.
The method used to determine if either weapons or stores are replenished at sea is

based on a simple aggregate total weight. Additionally, the Java code is hardwired to

determine if specific weapons can be replenished at sea. These methods should be

 84

refined to have the determination based on whether or not the CLF ship has a particular

item onboard and if specific weapons can be replenished at sea.

 85

THIS PAGE INTENTIONALLY LEFT BLANK

 86

LIST OF REFERENCES

Greanier, T., “Discover the Secrets of the JAVA Serialization API”,
http://developer.java.sun.com/developer/technicalArticles Programming/serialization,
(reprinted from JavaWorld, July 2000), September 2001.

Mitchell, M. L., Pro-Log 4.0: An Interactive War Game for teaching the importance of
LOGISTICS Planning and Execution, NPS, July 1988.

Perla, P.P., The Art of Wargaming, Naval Institute Press, 1990.

Schrady, D. A., User’s Guide for TACLOGS: Battle Group Tactical Logistics Support
System, NPS, December 1996.

Schrady, D. A., G.K.Smyth, and R. B. Vassian, Predicting Ship Fuel Consumption:
Update, NPS, July 1996.

Sterba, J. R., Operational Maneuver from the Sea Logistics Training Aid, NPS,
September 1999,

Troxell, A. W., Naval Logistics Simulator, NPS, September 1999.

Walrath,K. and M. Campione, The JFC Swing Tutorial: A Guide to Constructing GUIs,
Addison Wesley, November 2000.

www.au.af.mil/au/cpd/cpdgate/clip_af.htm, Air War College Website, November 2001.

www.janesonline.com, Jane’s Online 2001 website, November 2001.

www.nationalgeographic.com, National Geographic website, November 2001.

www.webclipart.about.com, Web Clip Art web site, November 2001.

 87

http://developer.java.sun.com/developer/technicalArticles Programming/serialization
http://www.au.af.mil/au/cpd/cpdgate/clip_af.htm
http://www.janesonline.com/
http://www.nationalgeographic.com/
http://www.webclipart.about.com/

THIS PAGE INTENTIONALLY LEFT BLANK

 88

BIBLIOGRAPHY

Aydin, E., Screen Dispositions of Naval Task Forces Against Anti-Ship Missiles, NPS,
March 2000.

Blanchette, B.J., Modeling Surface ASW and ASUW Engagements for the Naval
Postgraduate School Logistics Wargame, NPS, September 1988.

Bracken, J., M. Kress, and R. E. Rosenthal, eds, Warfare Modeling, MORS, 1995.

Buss, A., “Discrete Event Programming with Simkit”, Simulation News Europe, Issue 32,
August 2001.

Campione, M., K. Walrath, and A. Huml, The Java Tutorial Continued: The Rest of
JDK, Addison Wesley, January 2000.

Greanier, T. , “Discover the Secrets of the JAVA Serialization API”,
http://developer.java.sun.com/developer/technicalArticles/Programming/serialization,
(reprinted from JavaWorld, July 2000), September 2001.

Hodges, J. S. and J. A. Dewar, Is it You or Your Model Talking? A Framework for Model
Validation, Rand, 1992.

Law, A. M. and W. D. Kelton, Simulation Modeling and Analysis, McGraw-Hill, 2000.

Le, H. B., Advanced Naval Surface Fire Support Weapon Employment Against Mobile
Targets, NPS, December 1999.

Mitchell, M. L., Pro-Log 4.0: An Interactive War Game for teaching the importance of
LOGISTICS Planning and Execution, NPS, July 1988.

Perla, P.P., The Art of Wargaming, Naval Institute Press, 1990.

Schrady, D. A., User’s Guide for TACLOGS: Battle Group Tactical Logistics Support
System, NPS, December 1996.

Schrady, D. A., G.K.Smyth, and R. B. Vassian, Predicting Ship Fuel Consumption:
Update, NPS, July 1996.

Sterba, J. R., Operational Maneuver from the Sea Logistics Training Aid, NPS,
September 1999,

Thesis Preparation Manual, NPS, August 1999.

 89

http://developer.java.sun.com/developer/technicalArticles/Programming/serialization

Troxell, A. W., Naval Logistics Simulator, NPS, September 1999.

Walrath,K. and M. Campione, The JFC Swing Tutorial: A Guide to Constructing GUIs,
Addison Wesley, November 2000.

White, S., Fisher, R. Cattell, G. Hamilton, and M. Hapner, JDBC API Tutorial and
Reference, Second Edition: Universal Data Access for the Java 2 Platform, Addison
Wesley, July 2000.

www.au.af.mil/au/cpd/cpdgate/clip_af.htm, Air War College Website, November 2001.

www.janesonline.com, Jane’s Online 2001 website, November 2001.

www.nationalgeographic.com, National Geographic website, November 2001.

www.webclipart.about.com, Web Clip Art web site, November 2001.

 90

http://www.au.af.mil/au/cpd/cpdgate/clip_af.htm
http://www.janesonline.com/
http://www.nationalgeographic.com/
http://www.webclipart.about.com/

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Fort Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

3. Professor Dan Boger
 Naval Postgraduate School
 Monterey, California

4. Defense Logistic Studies Information Exchange
 U.S. Army Logistics Management College
 Fort Lee, Virginia

5. Professor David Schrady, Code OR/SO
 Department of Operations Research
 Naval Postgraduate School
 Monterey, California

6. Professor Arnold Buss, Code OR/BU
 Department of Operations Research
 Naval Postgraduate School
 Monterey, California

7. CDR Kevin J. Maher, Code OR/MK
 Department of Operations Research
 Naval Postgraduate School
 Monterey, California

8. LCDR Carolyn S. Fricke
 5322 Chieftain Circle
 Alexandria, Virginia 22312

 91

	I. INTRODUCTION
	II. METHODOLOGY
	A.MODELING AND JAVA PROGRAMMING
	B.DATABASE DEVELOPMENT
	1.CVBG Database
	2.Threat Database

	C. METHODOLOGY SUMMARY

	III. PLAYER MANUAL
	A.OPERATIONAL LOGISTICS WARGAME SUMMARY
	1.Offense
	2.Enemy Detection
	3.Defense
	4.Logistics
	a.Logistics Items
	b.Logistics Units
	c.Replenishment Requests
	d.Port Visits

	B.GAME PLAY START-UP
	1.Installation
	2.Initialization

	C.WELCOME SCREEN
	D.PLEASE WAIT PANEL
	E.INTELLIGENCE SUMMARY
	1.Intelligence Summary Tab
	2.Game Rules Tab
	3.Battle Group Summary Tab
	4.Current Logistics Status Tab
	5.Current Weapons Status Tab
	6.PreSail Decisions

	F.SETTING COURSE AND SPEED
	1.Course and Speed
	2.Course and Speeds for the CVBG (by group)
	3.Course and Speeds for Individual Ships

	G. ANIMATION
	1.Animation Tab
	2.Actions Tab
	a.Reason For Auto-Pause Panel
	b.Score Panel
	c.Sim Time Panel
	d.Game Summary Log Panel
	e.Select Actions Panel
	f.CLF Status Panel
	g.Logistics Status Panel
	h.Weapons Status Panel

	3.Control Panel

	H.PANELS SPAWNED BY SELECT ACTIONS PANEL
	1.Fire Weapons Panel
	2.Unrep Orders Panel
	a.Place an Order
	b.The Unrep Schedule
	c.Check an Order

	3.Change Coordinates Panels
	4.Add Coordinates Panel
	5.Save and Exit

	I.OTHER TOPICS
	1.Bonus and Penalty Points
	2.Surface Threats and Air Threats
	3.Scheduling Port Visits and Underway Replenishments

	IV. REFEREE MANUAL
	A. DATABASE CONTROL
	B.JAVA CODE CONTROL
	1.Maps, Bases, and Coordinate System
	2.Penalty and Bonus Points
	3.Random Variables
	4.Other Variables

	C.MISCELLANEOUS CONTROL

	V. CONCLUSIONS AND RECOMMENDATIONS
	A.ADVANTAGES
	1.Flexible
	2.Modern
	3.User-Friendly
	4.Quick Starter
	5.Portable

	B.RECOMMENDED ENHANCEMENTS
	1. State Variable Statistics
	2. Logistics and Weapons Inventory Statistics
	3.Other Game Play Statistics
	4.Cookie Cutter Sensors
	5.Enhancing Realism
	6. Hardwired Data
	a.Instance Variables
	b.Friendly and Enemy Bases
	c.Threat Air and Threat Surface Movement

	C.CONCLUSION

	APPENDIX A . THE OPLOG PACKAGE
	1.OPLOG.DATABASE CLASSES
	a.DataBaseInfo.java
	b.DataRepository.java
	c.LogRates.java
	d.ThreatDataGetter.java
	e.WeaponsData.java

	2.OPLOG.GRAPHICS CLASSES
	a.Animate.java
	b.ControlPanel.java
	c.Pinger.java
	d.SimTimePanel.java

	3.OPLOG.GUI CLASSES
	a.AfterWelcome.java
	b.CasGroupSetter.java
	c.CASListener.java
	d.CasUnitSetter.java
	e.CourseAndSpeed.java
	f.FireResultsPanel.java
	g.FireWeaponsPanel.java
	h.IntelSummary.java
	i.LogProgressBar.java
	j.MoreCasGroupSetter.java
	k.MoreCasUnitSetter.java
	l.MoreCourseAndSpeed.java
	m.MoreCourseAndSpeedUnits.java
	n.OplogWelcome.java
	o.PleaseWaitPanel.java
	p.SelectActionsListener.java
	q.SelectActionsPanel.java
	r.SliderListener
	s.SwingWorker.java
	t.TheLogPanel.java

	4.OPLOG.LOG CLASSES
	a.CheckUnrepSchedule.java
	b.CLFPanel.java
	c.CLFStatus.java
	d.DeleteUnrepRequest.java
	e.LogStatus.java
	f.OrderListener.java
	g.PlacedRASRequestsPanel.java
	h.ScorePanel.java
	i.ShipRASRequestsPanel.java
	j.ShowOrderPanel.java
	k.UnrepScheduler.java
	l.UnrepSummaryPanel.Java
	m.WeaponsStatus.java

	5.OPLOG.SMD CLASSES
	a.AirBG.java
	b.AirThreat.java
	c.AirThreatCourseGenerator.java
	d.AirThreatGenerator.java
	e.ArrivalProcess.java
	f.BattleGroupMoverManager.java
	g.ConstantRateMediator.java
	h.ConstantRateSensor.java
	i.Controller.java
	j.Deployment.java
	k.EnemyBase.java
	l.EnemyBaseGenerator.java
	m.FriendlyBase.java
	n.FriendlyBaseGenerator.java
	o.GenRandomDBTargets.java
	p.OplogMover.java
	q.PathMoverManager.java
	r.Ship.java
	s.SurfaceThreat.java
	t.SurfaceThreatCourseGenerator.java

	6.OPLOG.UTIL CLASSES
	a.MoverHashMap.java
	b.ShipHashMap.java

	APPENDIX B. RECOMMENDED ENHANCEMENTS
	1. PLAYABILITY AND FUNCTIONALITY ENHANCEMENTS
	a.Save and Resume
	b.Course and Speed Visual Aids
	c.Identification of Movers
	d.Manual Deletion Of Underway Replenishment Requests
	e.Underway Replenishment Rendezvous

	2.IMPROVING COMPUTER RESOURCE USAGE AND ROBUSTNESS
	a.JDBC Interface
	b.Logical Class Structure
	c.Reduce Game Delays

	3.INCREASING REALISM AND COMPLEXITY
	a.Scenario Development
	b. Friendly Air Assets
	c.F44 Consumption
	d.Link Inventory Levels and Ship Capabilities
	e.Weapons Use
	f.Weapons Inventory
	g.Multiple Combat Logistics Force Ships
	h.Additional Combatant and Combat Types
	i.Simulation times
	j.Land versus Water
	k.Refine Stores and Weapons RAS.

	LIST OF REFERENCES
	BIBLIOGRAPHY
	INITIAL DISTRIBUTION LIST

